ﻻ يوجد ملخص باللغة العربية
We report Lee-Yang zeros behavior at finite temperature and density. The quark number densities, <n>, are calculated at the pure imaginary chemical potential, where no sign problem occurs. Then, the canonical partition functions, Z_C(n,T,V), up to some maximal values of n are estimated through fitting theoretically motivated functions to <n>, which are used to compute the Lee-Yang zeros. We study the temperature dependence of the distributions of the Lee-Yang zeros around the pseudo-critical temperature region T/T_c = 0.84 - 1.35. In the distributions of the Lee-Yang zeros, we observe the Roberge-Weiss phase transition at T/T_c >= 1.20. We discuss the dependence of the behaviors of Lee-Yang zeros on the maximal value of n, so that we can estimate a reliable infinite volume limit.
Lee-Yang zeros are points on the complex plane of magnetic field where the partition function of a spin system is zero and therefore the free energy diverges. Lee-Yang zeros and their generalizations are ubiquitous in many-body systems and they fully
Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros --- complex singularities of the free energy in systems of finite size --- have led to a unified un
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models
We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $chi^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality.
We establish existence of order-disorder phase transitions for a class of non-sliding hard-core lattice particle systems on a lattice in two or more dimensions. All particles have the same shape and can be made to cover the lattice perfectly in a fin