ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo simulations of Gamma-ray space telescopes: a BoGEMMS multi-purpose application

269   0   0.0 ( 0 )
 نشر من قبل Valentina Fioretti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After the development of a BoGEMMS (Bologna Geant4 Multi-Mission Simulator) template for the back- ground study of X-ray telescopes, a new extension is built for the simulation of a Gamma-ray space mission (e.g. AGILE, Fermi), conceived to work as a common, multi-purpose framework for the present and future electron tracking gamma-ray space telescopes. The Gamma-ray extension involves the Geant4 mass model, the physics list and, more important, the production and treatment of the simulation output. From the user point of view, the simulation set-up follows a tree structure, with the main level being the selection of the simulation framework (the general, X-ray or gamma-ray application) and the secondary levels being the detailed configuration of the geometry and the output format. The BoGEMMS application to Gamma-ray missions has been used to evaluate the instrument performances of a new generation of Gamma-ray tele- scopes (e.g. Gamma-Light), and a full simulation of the AGILE mission is currently under construction, to scientifically validate and calibrate the simulator with real in-space data sets. A complete description of the BoGEMMS Gamma-ray framework is presented here, with an overview of the achieved results for the potential application to present and future experiments (e.g., GAMMA-400 and Gamma-Light). The evaluation of the photon conversion efficiency to beta particle pairs and the comparison to tabulated data allows the preliminary physical validation of the overall architecture. The Gamma-ray module application for the study of the Gamma-Light instrument performances is reported as reference test case.



قيم البحث

اقرأ أيضاً

266 - M.Teshima , E.Carmona , P.Colin 2009
The Imaging Air Cherenkov Telescopes (IACTs), like, HESS, MAGIC and VERITAS well demonstrated their performances by showing many exciting results at very high energy gamma ray domain, mainly between 100 GeV and 10 TeV. It is important to investigate how much we can improve the sensitivity in this energy range, but it is also important to expand the energy coverage and sensitivity towards new domains, the lower and higher energies, by extending this IACT techniques. For this purpose, we have carried out the optimization of the array of large IACTs assuming with new technologies, advanced photodetectors, and Ultra Fast readout system by Monte Carlo simulation, especially to obtain the best sensitivity in the energy range between 10 GeV and 100 GeV. We will report the performance of the array of Large IACTs with advanced technologies and its limitation.
The accuracy of Monte Carlo simulations in reproducing the scientific performance of space telescopes (e.g. angular resolution) is mandatory for a correct design of the mission. A brand-new Monte Carlo simulator of the Astrorivelatore Gamma ad Immagi ni LEggero (AGILE)/Gamma-Ray Imaging Detector (GRID) space telescope, AGILESim, is built using the customizable Bologna Geant4 Multi-Mission Simulator (BoGEMMS) architecture and the latest Geant4 library to reproduce the instrument performance of the AGILE/GRID instrument. The Monte Carlo simulation output is digitized in the BoGEMMS postprocessing pipeline, according to the instrument electronic read-out logic, then converted into the onboard data handling format, and finally analyzed by the standard mission on-ground reconstruction pipeline, including the Kalman filter, as a real observation in space. In this paper we focus on the scientific validation of AGILESim, performed by reproducing (i) the conversion efficiency of the tracker planes, (ii) the tracker charge readout distribution measured by the on-ground assembly, integration, and verification activity, and (iii) the point-spread function of in-flight observations of the Vela pulsar in the 100 MeV - 1 GeV energy range. We measure an in-flight angular resolution (FWHM) for Vela-like point sources of $2.0^{+0.2}_{-0.3}$ and $0.8^{+0.1}_{-0.1}$ degrees in the 100 - 300 and 300 - 1000 MeV energy bands, respectively. The successful cross-comparison of the simulation results with the AGILE on-ground and in-space performance validates the BoGEMMS framework for its application to future gamma-ray trackers (e.g. e-ASTROGAM and AMEGO).
A radiation gene box (RGB) onboard the SJ-10 satellite is a device carrying mice and drosophila cells to determine the biological effects of space radiation environment. The shielded fluxes of different radioactive sources were calculated and the lin ear energy transfers of gamma-rays, electrons, protons and alpha-particles in tissue were acquired using A-150 tissue-equivalent plastic. Then, a conceptual model of a space radiation instrument employing three semiconductor sub-detectors for deriving the charged and uncharged radiation environment of the RGB was designed. The energy depositions in the three sub-detectors were classified into fifteen channels (bins) in an algorithm derived from the Monte Carlo method. The physical feasibility of the conceptual instrument was also verified by Monte Carlo simulations.
We develop a comprehensive approach to simulate the deformation of mirrors and lenses due to thermal and mechanical stresses that couples efficiently to photon-based optics simulations. This expands upon previous work where we demonstrated a comprehe nsive ab initio approach to simulate astronomical images using a photon Monte Carlo method. We apply elasticity theory and estimate thermal effects by adapting a three-dimensional numerical method. We also consider the effect of active optics control systems and active cooling systems in further correcting distortions in the optics. We validate the approach by showing convergence to analytic estimates, and then apply the methodology to the WIYN 3.5m telescope primary mirror. We demonstrate that changes in the soak temperature result in second order point spread function (PSF) defocusing, the gravitational sag and positioning errors result in highly structured PSF distortions, and large-scale thermal gradients result in an elliptical PSF distortion patterns. All three aspects of the environment are larger than the intrinsic optical aberrations of the design, and further exploration with a variety of telescopes should lead to detailed PSF size and shape, astrometric distortion, and field variation predictions. The simulation capabilities developed in this work is publicly available with the Photon Simulation (PhoSim) package.
129 - Jamie Holder 2015
The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ra y sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا