ﻻ يوجد ملخص باللغة العربية
Multi-label classification (MLC) is an important class of machine learning problems that come with a wide spectrum of applications, each demanding a possibly different evaluation criterion. When solving the MLC problems, we generally expect the learning algorithm to take the hidden correlation of the labels into account to improve the prediction performance. Extracting the hidden correlation is generally a challenging task. In this work, we propose a novel deep learning framework to better extract the hidden correlation with the help of the memory structure within recurrent neural networks. The memory stores the temporary guesses on the labels and effectively allows the framework to rethink about the goodness and correlation of the guesses before making the final prediction. Furthermore, the rethinking process makes it easy to adapt to different evaluation criteria to match real-world application needs. In particular, the framework can be trained in an end-to-end style with respect to any given MLC evaluation criteria. The end-to-end design can be seamlessly combined with other deep learning techniques to conquer challenging MLC problems like image tagging. Experimental results across many real-world data sets justify that the rethinking framework indeed improves MLC performance across different evaluation criteria and leads to superior performance over state-of-the-art MLC algorithms.
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing
We propose a learning algorithm capable of learning from label proportions instead of direct data labels. In this scenario, our data are arranged into various bags of a certain size, and only the proportions of each label within a given bag are known
Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and ev
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently release
Extreme Multi-label classification (XML) is an important yet challenging machine learning task, that assigns to each instance its most relevant candidate labels from an extremely large label collection, where the numbers of labels, features and insta