ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Waves optical follow-up at VST

52   0   0.0 ( 0 )
 نشر من قبل Enrico Bozzo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the deep optical follow-up surveys of the first two gravitational-wave events, GW150914 and GW151226, accomplished by the GRAvitational Wave Inaf TeAm Collaboration (GRAWITA) using the VLT Survey Telescope (VST). We responded promptly to the gravitational-wave alerts sent by the LIGO and Virgo Collaborations, covering a region of $90$ deg$^2$ and $72$ deg$^2$ for GW150914 and GW151226, respectively, and kept observing the two areas over nearly two months. Both surveys reached an average limiting magnitude of about 21 in the $r-$band. The paper outlines the VST observational strategy and two independent procedures developed to search for transient counterpart candidates in multi-epoch VST images. Numerous transients have been discovered, mostly variable stars and eclipsing binaries, but no candidates are identified as related to the gravitational-wave events. The work done let on to gain experience and tune the tools for next LVC runs and in general to exploit the synergies between wide field optical surveys and future multi-messenger programs including projects like Theseus.



قيم البحث

اقرأ أيضاً

We present a new strategy to optimise the electromagnetic follow-up of gravitational wave triggers. This method is based on the widely used galaxy targeting approach where we add the stellar mass of galaxies in order to prioritise the more massive ga laxies. We crossmatched the GLADE galaxy catalog with the AllWISE catalog up to 400Mpc with an efficiency of $sim$93%, and derived stellar masses using a stellar-to-mass ratio using the WISE1 band luminosity. We developed a new grade to rank galaxies combining their 3D localisation probability associated to the gravitational wave event with the new stellar mass information. The efficiency of this new approach is illustrated with the GW170817 event, which shows that its host galaxy, NGC4993, is ranked at the first place using this new method. The catalog, named Mangrove, is publicly available and the ranking of galaxies is automatically provided through a dedicated web site for each gravitational wave event.
138 - M. Branchesi 2012
Pioneering efforts aiming at the development of multi-messenger gravitational wave and electromagnetic astronomy have been made. An electromagnetic observation follow-up program of candidate gravitational wave events has been performed (Dec 17 2009 t o Jan 8 2010 and Sep 4 to Oct 20 2010) during the recent runs of the LIGO and Virgo gravitational wave detectors. It involved ground-based and space electromagnetic facilities observing the sky at optical, X-ray and radio wavelengths. The joint gravitational wave and electromagnetic observation study requires the development of specific image analysis procedures able to discriminate the possible electromagnetic counterpart of gravitational wave triggers from contaminant/background events. The paper presents an overview of the electromagnetic follow-up program and the image analysis procedures.
We present an implementation of the Gehrels et al. (2016) galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) gala xy catalog, which we show is complete (with respect to a Schechter function) out to ~300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory LIGO-Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).
100 - K. Herner , J. Annis , D. Brout 2020
Gravitational wave (GW) events detectable by LIGO and Virgo have several possible progenitors, including black hole mergers, neutron star mergers, black hole--neutron star mergers, supernovae, and cosmic string cusps. A subset of GW events are expect ed to produce electromagnetic (EM) emission that, once detected, will provide complementary information about their astrophysical context. To that end, the LIGO--Virgo Collaboration (LVC) sends GW candidate alerts to the astronomical community so that searches for their EM counterparts can be pursued. The DESGW group, consisting of members of the Dark Energy Survey (DES), the LVC, and other members of the astronomical community, uses the Dark Energy Camera (DECam) to perform a search and discovery program for optical signatures of LVC GW events. DESGW aims to use a sample of GW events as standard sirens for cosmology. Due to the short decay timescale of the expected EM counterparts and the need to quickly eliminate survey areas with no counterpart candidates, it is critical to complete the initial analysis of each nights images as quickly as possible. We discuss our search area determination, imaging pipeline, and candidate selection processes. We review results from the DESGW program during the first two LIGO--Virgo observing campaigns and introduce other science applications that our pipeline enables.
We present an overview of the SkyMapper optical follow-up program for gravitational-wave event triggers from the LIGO/Virgo observatories, which aims at identifying early GW170817-like kilonovae out to $sim 200$ Mpc distance. We describe our robotic facility for rapid transient follow-up, which can target most of the sky at $delta<+10deg $ to a depth of $i_mathrm{AB}approx 20$ mag. We have implemented a new software pipeline to receive LIGO/Virgo alerts, schedule observations and examine the incoming real-time data stream for transient candidates. We adopt a real-bogus classifier using ensemble-based machine learning techniques, attaining high completeness ($sim$98%) and purity ($sim$91%) over our whole magnitude range. Applying further filtering to remove common image artefacts and known sources of transients, such as asteroids and variable stars, reduces the number of candidates by a factor of more than 10. We demonstrate the system performance with data obtained for GW190425, a binary neutron star merger detected during the LIGO/Virgo O3 observing campaign. In time for the LIGO/Virgo O4 run, we will have deeper reference images allowing transient detection to $i_mathrm{AB}approx $21 mag.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا