ﻻ يوجد ملخص باللغة العربية
An unzipping of a polyhedron P is a cut-path through its vertices that unfolds P to a non-overlapping shape in the plane. It is an open problem to decide if every convex P has an unzipping. Here we show that there are nearly flat convex caps that have no unzipping. A convex cap is a top portion of a convex polyhedron; it has a boundary, i.e., it is not closed by a base.
The construction of an unbounded polyhedron from a jagged convex cap is described, and several of its properties discussed, including its relation to Alexandrovs limit angle.
We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of n real numbers. First, we prove that every such grid contains a convex polygon with $Omega$(log n) vertices and that this
Given a convex polyhedron $P$ of $n$ vertices inside a sphere $Q$, we give an $O(n^3)$-time algorithm that cuts $P$ out of $Q$ by using guillotine cuts and has cutting cost $O((log n)^2)$ times the optimal.
We consider asymmetric convex intersection testing (ACIT). Let $P subset mathbb{R}^d$ be a set of $n$ points and $mathcal{H}$ a set of $n$ halfspaces in $d$ dimensions. We denote by $text{ch}(P)$ the polytope obtained by taking the convex hull of $
Given a finite set of points $P subseteq mathbb{R}^d$, we would like to find a small subset $S subseteq P$ such that the convex hull of $S$ approximately contains $P$. More formally, every point in $P$ is within distance $epsilon$ from the convex hul