ﻻ يوجد ملخص باللغة العربية
Given a finite set of points $P subseteq mathbb{R}^d$, we would like to find a small subset $S subseteq P$ such that the convex hull of $S$ approximately contains $P$. More formally, every point in $P$ is within distance $epsilon$ from the convex hull of $S$. Such a subset $S$ is called an $epsilon$-hull. Computing an $epsilon$-hull is an important problem in computational geometry, machine learning, and approximation algorithms. In many real world applications, the set $P$ is too large to fit in memory. We consider the streaming model where the algorithm receives the points of $P$ sequentially and strives to use a minimal amount of memory. Existing streaming algorithms for computing an $epsilon$-hull require $O(epsilon^{-(d-1)/2})$ space, which is optimal for a worst-case input. However, this ignores the structure of the data. The minimal size of an $epsilon$-hull of $P$, which we denote by $text{OPT}$, can be much smaller. A natural question is whether a streaming algorithm can compute an $epsilon$-hull using only $O(text{OPT})$ space. We begin with lower bounds that show that it is not possible to have a single-pass streaming algorithm that computes an $epsilon$-hull with $O(text{OPT})$ space. We instead propose three relaxations of the problem for which we can compute $epsilon$-hulls using space near-linear to the optimal size. Our first algorithm for points in $mathbb{R}^2$ that arrive in random-order uses $O(log ncdot text{OPT})$ space. Our second algorithm for points in $mathbb{R}^2$ makes $O(log(frac{1}{epsilon}))$ passes before outputting the $epsilon$-hull and requires $O(text{OPT})$ space. Our third algorithm for points in $mathbb{R}^d$ for any fixed dimension $d$ outputs an $epsilon$-hull for all but $delta$-fraction of directions and requires $O(text{OPT} cdot log text{OPT})$ space.
In this paper, we first consider the subpath convex hull query problem: Given a simple path $pi$ of $n$ vertices, preprocess it so that the convex hull of any query subpath of $pi$ can be quickly obtained. Previously, Guibas, Hershberger, and Snoeyin
The it Convex Hull Membership(CHM) problem is: Given a point $p$ and a subset $S$ of $n$ points in $mathbb{R}^m$, is $p in conv(S)$? CHM is not only a fundamental problem in Linear Programming, Computational Geometry, Machine Learning and Statistics,
Number Decision Diagrams (NDD) provide a natural finite symbolic representation for regular set of integer vectors encoded as strings of digit vectors (least or most significant digit first). The convex hull of the set of vectors represented by a NDD
Arithmetic automata recognize infinite words of digits denoting decompositions of real and integer vectors. These automata are known expressive and efficient enough to represent the whole set of solutions of complex linear constraints combining both
A subset $A$ of a Banach space is called Banach-Saks when every sequence in $A$ has a Ces{`a}ro convergent subsequence. Our interest here focusses on the following problem: is the convex hull of a Banach-Saks set again Banach-Saks? By means of a comb