ترغب بنشر مسار تعليمي؟ اضغط هنا

Industrial Symbiotic Relations as Cooperative Games

57   0   0.0 ( 0 )
 نشر من قبل Vahid Yazdanpanah
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a game-theoretical formulation for a specific form of collaborative industrial relations called Industrial Symbiotic Relation (ISR) games and provide a formal framework to model, verify, and support collaboration decisions in this new class of two-person operational games. ISR games are formalized as cooperative cost-allocation games with the aim to allocate the total ISR-related operational cost to involved industrial firms in a fair and stable manner by taking into account their contribution to the total traditional ISR-related cost. We tailor two types of allocation mechanisms using which firms can implement cost allocations that result in a collaboration that satisfies the fairness and stability properties. Moreover, while industries receive a particular ISR proposal, our introduced methodology is applicable as a managerial decision support to systematically verify the quality of the ISR in question. This is achievable by analyzing if the implemented allocation mechanism is a stable/fair allocation.



قيم البحث

اقرأ أيضاً

We present an approach for implementing a specific form of collaborative industrial practices-called Industrial Symbiotic Networks (ISNs)-as MC-Net cooperative games and address the so called ISN implementation problem. This is, the characteristics o f ISNs may lead to inapplicability of fair and stable benefit allocation methods even if the collaboration is a collectively desired one. Inspired by realistic ISN scenarios and the literature on normative multi-agent systems, we consider regulations and normative socioeconomic policies as two elements that in combination with ISN games resolve the situation and result in the concept of coordinated ISNs.
This paper discusses the dynamics of Transaction Cost (TC) in Industrial Symbiosis Institutions (ISI) and provides a fair and stable mechanism for TC allocation among the involved firms in a given ISI. In principle, industrial symbiosis, as an implem entation of the circular economy paradigm in the context of industrial relation, is a practice aiming at reducing the material/energy footprint of the firm. The well-engineered form of this practice is proved to decrease the transaction costs at a collective level. This can be achieved using information systems for: identifying potential synergies, evaluating mutually beneficial ones, implementing the contracts, and governing the behavior of the established relations. Then the question is how to distribute the costs for maintaining such an information system in a fair and stable manner? We see such a cost as a collective transaction cost and employ an integrated method rooted in cooperative game theory and multiagent systems research to develop a fair and stable allocation mechanism for it. The novelty is twofold: in developing analytical multiagent methods for capturing the dynamics of transaction costs in industrial symbiosis and in presenting a novel game-theoretic mechanism for its allocation in industrial symbiosis institutions. While the former contributes to the theories of industrial symbiosis (methodological contribution), the latter supports decision makers aiming to specify fair and stable industrial symbiosis contracts (practical contribution).
128 - Weizhe Chen , Zihan Zhou , Yi Wu 2021
One practical requirement in solving dynamic games is to ensure that the players play well from any decision point onward. To satisfy this requirement, existing efforts focus on equilibrium refinement, but the scalability and applicability of existin g techniques are limited. In this paper, we propose Temporal-Induced Self-Play (TISP), a novel reinforcement learning-based framework to find strategies with decent performances from any decision point onward. TISP uses belief-space representation, backward induction, policy learning, and non-parametric approximation. Building upon TISP, we design a policy-gradient-based algorithm TISP-PG. We prove that TISP-based algorithms can find approximate Perfect Bayesian Equilibrium in zero-sum one-sided stochastic Bayesian games with finite horizon. We test TISP-based algorithms in various games, including finitely repeated security games and a grid-world game. The results show that TISP-PG is more scalable than existing mathematical programming-based methods and significantly outperforms other learning-based methods.
In this paper we introduce a qualitative decision and game theory based on belief (B) and desire (D) rules. We show that a group of agents acts as if it is maximizing achieved joint goals.
Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modeled using cooperative game theory. In this paper, a h euristic algorithm is developed that can be embedded into an ABM to allow the agents to find coalition. The resultant coalition structures are comparable to those found by cooperative game theory solution approaches, specifically, the core. A heuristic approach is required due to the computational complexity of finding a cooperative game theory solution which limits its application to about only a score of agents. The ABM paradigm provides a platform in which simple rules and interactions between agents can produce a macro-level effect without the large computational requirements. As such, it can be an effective means for approximating cooperative game solutions for large numbers of agents. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games core solution. The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of exchange economy game. Finding the traditional cooperative game theory solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers games of up to nine players. The results indicate that our heuristic approach achieves a core solution over 90% of the time for the games considered in our experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا