ﻻ يوجد ملخص باللغة العربية
The Jones polynomial $V_{L}(t)$ for an oriented link $L$ is a one-variable Laurent polynomial link invariant discovered by Jones. For any integer $nge 3$, we show that: (1) the difference of Jones polynomials for two oriented links which are $C_{n}$-equivalent is divisible by $left(t-1right)^{n}left(t^{2}+t+1right)left(t^{2}+1right)$, and (2) there exists a pair of two oriented knots which are $C_{n}$-equivalent such that the difference of the Jones polynomials for them equals $left(t-1right)^{n}left(t^{2}+t+1right)left(t^{2}+1right)$.
Let $n$ be a positive integer. M. K. Dabkowski and J. H. Przytycki introduced the $n$th Burnside group of links which is preserved by $n$-moves, and proved that for any odd prime $p$ there exist links which are not equivalent to trivial links up to $
This paper is a continuation on the 2012 paper on Cutting Twisted Solid Tori (TSTs), in which we considered twisted solid torus links (tst links). We generalize the notion of tst links to surgerized tst links: recall that when performing $Phi^mu(n(ta
The writhe polynomial is a fundamental invariant of an oriented virtual knot. We introduce a kind of local moves for oriented virtual knots called shell moves. The first aim of this paper is to prove that two oriented virtual knots have the same writ
In a previous paper, the authors proved that Milnor link-homotopy invariants modulo $n$ classify classical string links up to $2n$-move and link-homotopy. As analogues to the welded case, in terms of Milnor invariants, we give here two classification
Oikawa defined an unknotting operation on virtual knots, called a CF-move, and gave a classification of 2-component virtual links up to CF-moves by the virtual linking number and his $n$-invariant. In particular, it was proved that a CF-move characte