ﻻ يوجد ملخص باللغة العربية
The diffuse soft X-ray emissivity from galactic winds is computed during the Epoch of Reionization (EoR). We consider two analytic models, a pressure-driven wind and a superbubble model, and a 3D cosmological simulation including gas dynamics from the First Billion Years (FiBY) project. The analytic models are normalized to match the diffuse X-ray emissivity of star-forming galaxies in the nearby Universe. The cosmological simulation uses physically motivated star formation and wind prescriptions, and includes radiative transfer corrections. The models and the simulation all are found to produce sufficient heating of the Intergalactic Medium to be detectable by current and planned radio facilities through 21 cm measurements during the EoR. While the analytic models predict a 21 cm emission signal relative to the Cosmic Microwave Background sets in by $z_{rm trans} simeq 8 - 10$, the predicted signal in the FiBY simulation remains in absorption until reionization completes. The 21 cm absorption differential brightness temperature reaches a minimum of $Delta T simeq -130$ to $-200$ mK, depending on model. Allowing for additional heat from high mass X-ray binaries pushes the transition to emission to $z_{rm trans} simeq 10 - 12$, with shallower absorption signatures having a minimum of $Delta T simeq -110$ to $-140$ mK. The 21 cm signal may be a means of distinguishing between the wind models, with the superbubble model favouring earlier reheating. While an early transition to emission may indicate X-ray binaries dominate the reheating, a transition to emission as early as $z_{rm trans} > 12$ would suggest the presence of additional heat sources.
A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas ar
During reionization, the intergalactic medium is heated impulsively by supersonic ionization fronts (I-fronts). The peak gas temperatures behind the I-fronts, $T_mathrm{reion}$, are a key uncertainty in models of the thermal history after reionizatio
We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift $approx$ 9.1 using new upper limits on the 21-cm power spectrum measured by the LOFAR radio-telescope and a prior on the ionized fraction at that
Heating of neutral gas by energetic sources is crucial for the prediction of the 21 cm signal during the epoch of reionization (EoR). To investigate differences induced on statistics of the 21 cm signal by various source types, we use five radiative
The intergalactic medium is expected to clump on scales down to $10^4-10^8$ M$_{odot}$ before the onset of reionization. The impact of these small-scale structures on reionization is poorly understood despite the modern understanding that gas clumpin