ﻻ يوجد ملخص باللغة العربية
For the study of chaotic dynamics and dimension of attractors the concepts of the Lyapunov exponents was found useful and became widely spread. Such characteristics of chaotic behavior, as the Lyapunov dimension and the entropy rate, can be estimated via the Lyapunov exponents. In this work an analytical approach to the study of the Lyapunov dimension, convergency and entropy for a dynamical model of Chua memristor circuit is demonstrated.
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashin
We establish that the entropy production rate of a classically chaotic Hamiltonian system coupled to the environment settles, after a transient, to a meta-stable value given by the sum of positive generalized Lyapunov exponents. A meta-stable steady
Chaotic dynamics with sensitive dependence on initial conditions may result in exponential decay of correlation functions. We show that for one-dimensional interval maps the corresponding quantities, that is, Lyapunov exponents and exponential decay
We introduce the notion of Lyapunov exponents for random dynamical systems, conditioned to trajectories that stay within a bounded domain for asymptotically long times. This is motivated by the desire to characterize local dynamical properties in the
As a model to provide a hands-on, elementary understanding of chaotic dynamics in dimension 3, we introduce a $C^2$-open set of diffeomorphisms of whose cross sections are Cantor sets; the intersection of the unstable and stable sets contains a fract