ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic theory of non-thermal fixed points in a Bose gas

85   0   0.0 ( 0 )
 نشر من قبل Thomas Gasenzer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure rescaling of spatial correlations, with time defining the scale parameter. The non-equilibrium initial condition set by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically slowed approach to a non-thermal fixed point. We identify such fixed points using a non-perturbative kinetic theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A key result is the simple analytical universal scaling form of the non-perturbative many-body scattering matrix, for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical critical exponent $z$ and an anomalous scaling dimension $eta$. The approach of the non-thermal fixed point is, in particular, found to involve a rescaling of momenta in time $t$ by $t^{beta}$, with $beta=1/z$, within our kinetic approach independent of $eta$. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral as well as the non-perturbative many-body coupling function. As a side result we obtain a possible finite-size interpretation of wave-turbulent scaling recently measured by Navon et al.



قيم البحث

اقرأ أيضاً

Driven-dissipative systems are expected to give rise to non-equilibrium phenomena that are absent in their equilibrium counterparts. However, phase transitions in these systems generically exhibit an effectively classical equilibrium behavior in spit e of their non-equilibrium origin. In this paper, we show that multicritical points in such systems lead to a rich and genuinely non-equilibrium behavior. Specifically, we investigate a driven-dissipative model of interacting bosons that possesses two distinct phase transitions: one from a high- to a low-density phase---reminiscent of a liquid-gas transition---and another to an antiferromagnetic phase. Each phase transition is described by the Ising universality class characterized by an (emergent or microscopic) $mathbb{Z}_2$ symmetry. They, however, coalesce at a multicritical point, giving rise to a non-equilibrium model of coupled Ising-like order parameters described by a $mathbb{Z}_2 times mathbb{Z}_2$ symmetry. Using a dynamical renormalization-group approach, we show that a pair of non-equilibrium fixed points (NEFPs) emerge that govern the long-distance critical behavior of the system. We elucidate various exotic features of these NEFPs. In particular, we show that a generic continuous scale invariance at criticality is reduced to a discrete scale invariance. This further results in complex-valued critical exponents and spiraling phase boundaries, and it is also accompanied by a complex Liouvillian gap even close to the phase transition. As direct evidence of the non-equilibrium nature of the NEFPs, we show that the fluctuation-dissipation relation is violated at all scales, leading to an effective temperature that becomes hotter and hotter at longer and longer wavelengths. Finally, we argue that this non-equilibrium behavior can be observed in cavity arrays with cross-Kerr nonlinearities.
Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrabl e Hamiltonian. At late times, these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and ex plain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tuneable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.
By quenching the strength of interactions in a partially condensed Bose gas we create a super-saturated vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed atoms ($N_0$) grows even though the t emperature ($T$) rises and the total atom number decays. We show that the non-equilibrium evolution of the system is isoenergetic and for small initial $N_0$ observe a clear separation between $T$ and $N_0$ dynamics, thus explicitly demonstrating the theoretically expected two-step picture of condensate growth. For increasing initial $N_0$ values we observe a crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be explained using a simple equation of state for an interacting harmonically-trapped atomic gas.
Bose-Einstein condensation is unique among phase transitions between different states of matter in the sense that it occurs even in the absence of interactions between particles. In Einsteins textbook picture of an ideal gas, purely statistical argum ents set an upper bound on the number of particles occupying the excited states of the system, and condensation is driven by this saturation of the quantum vapour. Dilute ultracold atomic gases are celebrated as a realisation of Bose-Einstein condensation in close to its purely statistical form. Here we scrutinise this point of view using an ultracold gas of potassium (39K) atoms, in which the strength of interactions can be tuned via a Feshbach scattering resonance. We first show that under typical experi-mental conditions a partially condensed atomic gas strongly deviates from the textbook concept of a saturated vapour. We then use measurements at a range of interaction strengths and temperatures to extrapolate to the non-interacting limit, and prove that in this limit the behaviour of a Bose gas is consistent with the saturation picture. Finally, we provide evidence for the universality of our observations through additional measurements with a different atomic species, 87Rb. Our results suggest a new way of characterising condensation phenomena in different physical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا