ﻻ يوجد ملخص باللغة العربية
By quenching the strength of interactions in a partially condensed Bose gas we create a super-saturated vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed atoms ($N_0$) grows even though the temperature ($T$) rises and the total atom number decays. We show that the non-equilibrium evolution of the system is isoenergetic and for small initial $N_0$ observe a clear separation between $T$ and $N_0$ dynamics, thus explicitly demonstrating the theoretically expected two-step picture of condensate growth. For increasing initial $N_0$ values we observe a crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be explained using a simple equation of state for an interacting harmonically-trapped atomic gas.
We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the cond
We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasi-homogeneous atomic gas, prepared in an optical-box trap. We characterise the critical point for condensation and observe saturation of the thermal component in a
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and ex
Bose-Einstein condensation is unique among phase transitions between different states of matter in the sense that it occurs even in the absence of interactions between particles. In Einsteins textbook picture of an ideal gas, purely statistical argum
We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trapping potential, for a wide range of interaction strengths across a Feshbach resonance. We show that in our system this hydrodynamic phenomenon