ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of a Failed Eclipse Plasma Ejection Using EUV Observations

84   0   0.0 ( 0 )
 نشر من قبل Ehsan Tavabi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photometry of eclipse white-light (W-L) images showing a moving blob is interpreted for the first time together with observations from space with the PRoject for On Board Autonomy (PROBA-2) mission (ESA). An off-limb event seen with great details in W-L was analyzed with the SWAP imager (Sun Watcher using Active pixel system detector and image Processing) working in the EUV near 174 A. It is an elongated plasma blob structure of 25 Mm diameter moving above the E-limb with coronal loops under. Summed and co-aligned SWAP images are evaluated using a 20 hours sequence, in addition to the July 11, 2010 eclipse W-L images taken from several sites. The Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamical Observatory (SDO) recorded the event suggesting a magnetic reconnection near a high neutral point; accordingly, we also call it a magnetic plasmoid. The measured proper motion of the blob shows a velocity up to 12 km s^-1. Electron densities of the isolated condensation (cloud or blob or plasmoid) is photometrically evaluated. The typical value is 10^8 cm^-3 at r=1.7 R, superposed on a background corona of 10^7 cm^-3 density. The mass of the cloud near its maximum brightness is found to be 1.6x10^13 gr which is typically 0.6x10^-4 of the overall mass of the corona. From the extrapolated magnetic field the cloud evolves inside a rather broad open region but decelerates, after reaching its maximum brightness. The influence of such small events for supplying material to the ubiquitous slow wind is noticed. A precise evaluation of the EUV photometric data after accurately removing the stray light, suggests an interpretation of the weak 174 A radiation of the cloud as due to resonance scattering in the Fe IX/X lines.



قيم البحث

اقرأ أيضاً

One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO) provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the GOES soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.
We present coordinated coronal observations of the August 21, 2017 total solar eclipse with the Airborne Infrared Spectrometer (AIR-Spec) and the Extreme-ultraviolet Imaging Spectrometer (EIS). These instruments provide an unprecedented view of the s olar corona in two disparate wavelength regimes, the near to mid infrared (IR) and the extreme ultraviolet (EUV), opening new pathways for characterizing the complex coronal plasma environment. During totality, AIR-Spec sampled coronal IR spectra near the equatorial west limb, detecting strong sources of Mg VIII, S XI, Si IX, and Si X in two passbands encompassing 1.4 - 4 $mu$m. We apply emission measure (EM) loci analysis to these IR emission lines to test their capacity as coronal temperature diagnostics. The density-sensitive Fe XII 186.9 r{A}/192.4 r{A} line pair supplies spatially resolved, line-of-sight electron densities, supporting the EM loci analysis. From this, we find EM loci intersections at temperatures of $10^{6.13}$ K at 30 arcsec from the limb and $10^{6.21}$ K at 100 arcsec. Applying the same EM loci analysis to 27 EIS emission lines associated with seven ion species (Fe X-XIV, S X, and Si X) confirms these results, displaying strong evidence of isothermal plasma throughout the region. However, the IR EM loci analysis suffers from moderate uncertainties. The likely sources include: poor signal, infrared contamination from a prominence, and photoexcitation by continuum radiation. Regardless, we demonstrate that EUV spectral data are valuable constraints to coronal infrared emission models, and will be powerful supplements for future IR solar observatories, particularly DKIST.
138 - A. Bemporad , R. Susino , 2014
In this work UV and white light (WL) coronagraphic data are combined to derive the full set of plasma physical parameters along the front of a shock driven by a Coronal Mass Ejection. Pre-shock plasma density, shock compression ratio, speed and incli nation angle are estimated from WL data, while pre-shock plasma temperature and outflow velocity are derived from UV data. The Rankine-Hugoniot (RH) equations for the general case of an oblique shock are then applied at three points along the front located between $2.2-2.6$ R$_odot$ at the shock nose and at the two flanks. Stronger field deflection (by $sim 46^circ$), plasma compression (factor $sim 2.7$) and heating (factor $sim 12$) occur at the nose, while heating at the flanks is more moderate (factor $1.5-3.0$). Starting from a pre-shock corona where protons and electrons have about the same temperature ($T_p sim T_e sim 1.5 cdot 10^6$ K), temperature increases derived with RH equations could better represent the protons heating (by dissipation across the shock), while the temperature increase implied by adiabatic compression (factor $sim 2$ at the nose, $sim 1.2-1.5$ at the flanks) could be more representative of electrons heating: the transit of the shock causes a decoupling between electron and proton temperatures. Derived magnetic field vector rotations imply a draping of field lines around the expanding flux rope. The shock turns out to be super-critical (sub-critical) at the nose (at the flanks), where derived post-shock plasma parameters can be very well approximated with those derived by assuming a parallel (perpendicular) shock.
The EUV (100-912 {AA}) is a spectral region notoriously difficult to observe due to attenuation by neutral hydrogen gas in the interstellar medium. Despite this, hundreds to thousands of nearby stars of different spectral types and magnetic activity levels are accessible in the EUV range. The EUV probes interesting and complicated regions in the stellar atmosphere like the lower corona and transition region that are inaccessible from other spectral regions. In this white paper we describe how direct EUV observations, which require a dedicated grazing-incidence observatory, cannot yet be accurately substituted with models and theory. Exploring EUV emission from cool dwarf stars in the time domain can make a major contribution to understanding stellar outer atmospheres and magnetism, and offers the clearest path toward detecting coronal mass ejections on stars other than the Sun.
Coronal mass ejections (CMEs) cause disturbances in the environment of the Earth when they arrive at the Earth. However, the prediction of the arrival of CMEs still remains a challenge. We have developed an interplanetary scintillation (IPS) estimati on system based on a global magnetohydrodynamic (MHD) simulation of the inner heliosphere to predict the arrival time of CMEs. In this system, the initial speed of a CME is roughly derived from white light coronagraph observations. Then, the propagation of the CME is calculated by a global MHD simulation. The IPS response is estimated by the three-dimensional density distribution of the inner heliosphere derived from the MHD simulation. The simulated IPS response is compared with the actual IPS observations made by the Institute for Space-Earth Environmental Research, Nagoya University, and shows good agreement with that observed. We demonstrated how the simulation system works using a halo CME event generated by a X9.3 flare observed on September 5, 2017. We find that the CME simulation that best estimates the IPS observation can more accurately predict the time of arrival of the CME at the Earth. These results suggest that the accuracy of the CME arrival time can be improved if our current MHD simulations include IPS data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا