ﻻ يوجد ملخص باللغة العربية
We consider phases of matter at finite charge density which spontaneously break spatial translations. Without taking a hydrodynamic limit we identify a boost invariant incoherent current operator. We also derive expressions for the small frequency behaviour of the thermoelectric conductivities generalising those that have been derived in a translationally invariant context. Within holographic constructions we show that the DC conductivity for the incoherent current can be obtained from a solution to a Stokes flow for an auxiliary fluid on the black hole horizon combined with specific thermodynamic quantities associated with the equilibrium black hole solutions.
We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican hat potential for spatial gradients. We show that
We consider the noncommutative space-times with Lie-algebraic noncommutativity (e.g. $kappa$-deformed Minkowski space). In the framework with classical fields we extend the $star$-product in order to represent the noncommutative translations in terms
Most phenomenological analyses of searches for supersymmetric particles have been performed within the MSSM with real SUSY parameters and conserved R-parity and lepton flavour. Here we summarize recent results obtained in the (s)lepton sector when one of the above assumptions is relaxed.
We consider thermal phases of holographic lattices at finite chemical potential in which a continuous internal bulk symmetry can be spontaneously broken. In the normal phase, translational symmetry is explicitly broken by the lattice and the only con
When a quantum wire is weakly confined, a conductance plateau appears at e^2/h with decreasing carrier density in zero magnetic field accompanied by a gradual suppression of the 2e^2/h plateau. Applying an in-plane magnetic field B|| does not alter t