ترغب بنشر مسار تعليمي؟ اضغط هنا

The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft

352   0   0.0 ( 0 )
 نشر من قبل Oleg Vaisberg
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere, arranged by the angle between electric field vector and the projection of spacecraft position radius vector in the YZ plane in MSE coordinate system (${theta}$ E ). All passes were divided into 3 angular sectors near 0{deg}, 90{deg} and 180{deg} ${theta}$ E angles in order to estimate the role of IMF direction in plasma and magnetic properties of dayside Martian magnetosphere. The time interval chosen was from January 17 through February 4, 2016 when MAVEN was crossing the dayside magnetosphere at SZA ~ 70{deg}. Magnetosphere as the region with prevailing energetic planetary ions is always found between the magnetosheath and the ionosphere. 3 angular sectors of dayside interaction region in MSE coordinate system with different orientation of the solar wind electric field vector E = -1/c V x B showed that for each sector one can find specific profiles of the magnetosheath, the magnetic barrier and the magnetosphere. Plume ions originate in the northern MSE sector where motion electric field is directed from the planet. This electric field ejects magnetospheric ions leading to dilution of magnetospheric heavy ions population, and this effect is seen in some magnetospheric profiles. Magnetic barrier forms in front of the magnetosphere, and relative magnetic field magnitudes in these two domains vary. The average height of the boundary with ionosphere is ~530 km and the average height of the magnetopause is ~730 km. We discuss the implications of the observed magnetosphere structure to the planetary ions loss mechanism.



قيم البحث

اقرأ أيضاً

We test and compare a number of existing models predicting the location of magnetic reconnection at Earths dayside magnetopause for various solar wind conditions. We employ robust image processing techniques to determine the locations where each mode l predicts reconnection to occur. The predictions are then compared to the magnetic separators, the magnetic field lines separating different magnetic topologies. The predictions are tested in distinct high-resolution simulations with interplanetary magnetic field (IMF) clock angles ranging from 30 to 165 degrees in global magnetohydrodynamic simulations using the three-dimensional Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the described techniques can be generally applied to any self-consistent magnetosphere code. Additional simulations are carried out to test location model dependence on IMF strength and dipole tilt. We find that most of the models match large portions of the magnetic separators when the IMF has a southward component, with the models saying reconnection occurs where the local reconnection rate and reconnection outflow speed are maximized performing best. When the IMF has a northward component, none of the models tested faithfully map the entire magnetic separator, but the maximum magnetic shear model is the best at mapping the separator in the cusp region where reconnection has been observed. Predictions for some models with northward IMF orientations improve after accounting for plasma flow shear parallel to the reconnecting components of the magnetic fields. Implications for observations are discussed.
The response of the Earths magnetosphere to changing solar wind conditions are studied with a 3D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earths magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data is first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the $L_1$ Lagrange point to the foreshock, therefore the OMNIWeb data is appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the northern hemisphere than the southern one during quiet conditions. If the By is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the southern hemisphere. Overall, the study implies that a 3D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.
We have used the high-resolution data of the Magnetospheric Multiscale (MMS) mission dayside phase to identify twenty-one previously unreported encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversal s, and j dot E greater than 0. Three of the new EDR encounters, which occurred within a one-minute-long interval on November 23rd, 2016, are analyzed in detail. These events, which resulted from a relatively low and oscillating magnetopause velocity, contained large electric fields (several tens to hundreds of milliVolts per meter), crescent-shaped electron velocity phase space densities, large currents (greater than 2 microAmperes per square meter), and Ohmic heating of the plasma (near or exceeding 10 nanoWatts per cubic meter). Because of the slow in-and-out motion of the magnetopause, two of these events show the unprecedented mixture of perpendicular and parallel crescents, indicating the first breaking and reconnecting of solar wind and magnetospheric field lines. An extended list of thirty-two EDR or near-EDR events is also included, and demonstrates a wide variety of observed plasma behavior inside and surrounding the reconnection site.
91 - Lilla Juhasz 2018
In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground based data in order to derive the lower energy boundar y condition for many radiation belt models. The first step is to test the chorus-inversion method on in-situ data of Van Allen Probes in the generation region. Density and thermal velocity of energetic electrons (few keV - 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes. Nonlinear wave growth theory of citet{omura2011triggering} serves as the basis for our inversion method, assuming that the triggering wave is originated by the linear cyclotron instability. We present sixteen, consecutive rising-tone emissions recorded in the generation region between 11-12UT on 14 November 2012. The results of the inversion are compared with density and thermal velocities (parallel and perpendicular) of energetic electrons derived from unidirectional flux data of Helium Oxygen Proton Electron (HOPE) instrument, showing a good agreement: the normalized root-mean-square deviation between the measured and predicted values are $sim13%, sim6%$, and $sim10%$, respectively. We found that the theoretical amplitudes are consistent with the measured ones. The relation between linear and nonlinear wave growth agrees with our basic assumption, namely, linear growth is a preceding process of nonlinear wave growth. We analyze electron distributions at the relativistic resonant energy ranges.
This paper describes the unfolding of the solar modulated galactic cosmic ray H and He nuclei spectra beyond ~105 AU in the heliosheath. Between 2008.0 and 2012.3 when Voyager 1 went from about 105 to 120.5 AU the spectral intensities of these two co mponents between about 30 and 500 MeV/nuc unfolded (increased) in a manner consistent with an average modulation potential decrease ~5 MV per AU as described by a Parker like cosmic ray transport in the heliosphere where the overall modulation is described by a modulation potential in MV. Between 120.5 and 121.7 AU, however, as a result of two sudden intensity increases starting on May 8th and August 25th, 2012, this modulation potential decreased by ~80 MV and spectra resembling possible local interstellar spectra for H and He were revealed. Considering these spectra to be the local interstellar spectra would imply that almost 1/3 of the total modulation potential of about 270 MV required to explain the spectra of these components observed at the Earth must occur in just a 1 AU radial interval in the outer heliosheath. As a result about ~80% of the total modulation potential observed at the Earth at this time occurs in the heliosheath itself. The remaining 20% of the total modulation occurs inside the heliospheric termination shock. The details of these intensity changes and their description by a simple modulation model are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا