ترغب بنشر مسار تعليمي؟ اضغط هنا

One year in the Earths magnetosphere: A global MHD simulation and spacecraft measurements

107   0   0.0 ( 0 )
 نشر من قبل Gabor Facsko Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The response of the Earths magnetosphere to changing solar wind conditions are studied with a 3D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earths magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data is first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the $L_1$ Lagrange point to the foreshock, therefore the OMNIWeb data is appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the northern hemisphere than the southern one during quiet conditions. If the By is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the southern hemisphere. Overall, the study implies that a 3D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.

قيم البحث

اقرأ أيضاً

We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere, arranged by the angle between electric field vector and the projection of spacecraft position radius vector in the YZ plane in MSE coordinate system (${theta}$ E ). All passes w ere divided into 3 angular sectors near 0{deg}, 90{deg} and 180{deg} ${theta}$ E angles in order to estimate the role of IMF direction in plasma and magnetic properties of dayside Martian magnetosphere. The time interval chosen was from January 17 through February 4, 2016 when MAVEN was crossing the dayside magnetosphere at SZA ~ 70{deg}. Magnetosphere as the region with prevailing energetic planetary ions is always found between the magnetosheath and the ionosphere. 3 angular sectors of dayside interaction region in MSE coordinate system with different orientation of the solar wind electric field vector E = -1/c V x B showed that for each sector one can find specific profiles of the magnetosheath, the magnetic barrier and the magnetosphere. Plume ions originate in the northern MSE sector where motion electric field is directed from the planet. This electric field ejects magnetospheric ions leading to dilution of magnetospheric heavy ions population, and this effect is seen in some magnetospheric profiles. Magnetic barrier forms in front of the magnetosphere, and relative magnetic field magnitudes in these two domains vary. The average height of the boundary with ionosphere is ~530 km and the average height of the magnetopause is ~730 km. We discuss the implications of the observed magnetosphere structure to the planetary ions loss mechanism.
The available magnetic field data from the terrestrial magnetosphere, solar wind and planetary magnetospheres exceeds over $10^6$ hours. Identifying plasma waves in these large data sets is a time consuming and tedious process. In this Paper, we prop ose a solution to this problem. We demonstrate how Self-Organizing Maps can be used for rapid data reduction and identification of plasma waves in large data sets. We use 72,000 fluxgate and 110,000 search coil magnetic field power spectra from the Magnetospheric Multiscale Mission (MMS$_1$) and show how the Self-Organizing Map sorts the power spectra into groups based on their shape. Organizing the data in this way makes it very straightforward to identify power spectra with similar properties and therefore this technique greatly reduces the need for manual inspection of the data. We suggest that Self-Organizing Maps offer a time effective and robust technique, which can significantly accelerate the processing of magnetic field data and discovery of new wave forms.
We test and compare a number of existing models predicting the location of magnetic reconnection at Earths dayside magnetopause for various solar wind conditions. We employ robust image processing techniques to determine the locations where each mode l predicts reconnection to occur. The predictions are then compared to the magnetic separators, the magnetic field lines separating different magnetic topologies. The predictions are tested in distinct high-resolution simulations with interplanetary magnetic field (IMF) clock angles ranging from 30 to 165 degrees in global magnetohydrodynamic simulations using the three-dimensional Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resistivity, although the described techniques can be generally applied to any self-consistent magnetosphere code. Additional simulations are carried out to test location model dependence on IMF strength and dipole tilt. We find that most of the models match large portions of the magnetic separators when the IMF has a southward component, with the models saying reconnection occurs where the local reconnection rate and reconnection outflow speed are maximized performing best. When the IMF has a northward component, none of the models tested faithfully map the entire magnetic separator, but the maximum magnetic shear model is the best at mapping the separator in the cusp region where reconnection has been observed. Predictions for some models with northward IMF orientations improve after accounting for plasma flow shear parallel to the reconnecting components of the magnetic fields. Implications for observations are discussed.
We consider the problem of joint analysis of two-way laser range and one-way frequency measurements in high-precision tests of general relativity with spacecrafts. Of main interest to such tests is the accuracy of the computed values of the one-way f requency observables. We identify the principal sources of error in these observables to be the errors in the modeled corrections due to various `small effects, such as that of the troposphere, the error in the reflection time of the laser pulse from the spacecraft, and the error of fitting the spacecraft trajectory to the laser data. We suggest ways to evaluating these errors.
Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا