ترغب بنشر مسار تعليمي؟ اضغط هنا

Social Influence with Recurrent Mobility with multiple options

98   0   0.0 ( 0 )
 نشر من قبل J\\'er\\^ome Michaud
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we discuss the possible generalizations of the Social Influence with Recurrent Mobility (SIRM) model developed in Phys. Rev. Lett. 112, 158701 (2014). Although the SIRM model worked approximately satisfying when US election was modelled, it has its limits: it has been developed only for two-party systems and can lead to unphysical behaviour when one of the parties has extreme vote share close to 0 or 1. We propose here generalizations to the SIRM model by its extension for multi-party systems that are mathematically well-posed in case of extreme vote shares, too, by handling the noise term in a different way. In addition, we show that our method opens new applications for the study of elections by using a new calibration procedure, and makes possible to analyse the influence of the free will (creating a new party) and other local effects for different commuting network topologies.



قيم البحث

اقرأ أيضاً

Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans physical sensations to external stimuli, we propose a new method to detect the influence of spreadin g by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods.
The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited ca scades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set.
Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be pr esent in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someones location from their friends locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a new model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of these networks such as: i) the size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by the model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.
Human behaviors exhibit ubiquitous correlations in many aspects, such as individual and collective levels, temporal and spatial dimensions, content, social and geographical layers. With rich Internet data of online behaviors becoming available, it at tracts academic interests to explore human mobility similarity from the perspective of social network proximity. Existent analysis shows a strong correlation between online social proximity and offline mobility similari- ty, namely, mobile records between friends are significantly more similar than between strangers, and those between friends with common neighbors are even more similar. We argue the importance of the number and diversity of com- mon friends, with a counter intuitive finding that the number of common friends has no positive impact on mobility similarity while the diversity plays a key role, disagreeing with previous studies. Our analysis provides a novel view for better understanding the coupling between human online and offline behaviors, and will help model and predict human behaviors based on social proximity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا