ﻻ يوجد ملخص باللغة العربية
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin fil
A domain wall separating two oppositely magnetized regions in a ferromagnetic semiconductor exhibits, under appropriate conditions, strongly nonlinear I-V characteristics similar to those of a p-n diode. We study these characteristics as functions of
We present a theoretical study of spin-dependent transport through a ferromagnetic domain wall. With an increase of the number of components of the exchange coupling, we have observed that the variance of the conductance becomes half. As the strength
We present a numerical simulation study of the exchange bias (EB) effect in nanoparticles with core/shell structure aimed to unveil the microscopic origin of some of the experimental phenomenology associated to this effect. In particular, we have foc