ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanism of Electric Power Generation from Ionic Droplet Motion on Polymer Supported Graphene

87   0   0.0 ( 0 )
 نشر من قبل Shanshan Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene-based electric power generation that converts mechanical energy of flow of ionic droplets over the device surface into electricity has emerged as promising candidate for a blue-energy network. Yet the lack of a microscopic understanding of the underlying mechanism has prevented ability to optimize and control the performance of such devices. This requires information on interfacial structure and charging behavior at the molecular level. Here, we use sum-frequency vibrational spectroscopy (SFVS) to probe the interfaces of devices composed of aqueous solution, graphene and supporting polymer substrate. We discover that the surface dipole layer of the polymer is responsible for ion attraction toward and adsorption at the graphene surface that leads to electricity generation in graphene. Graphene itself does not attract ions and only acts as a conducting sheet for the induced carrier transport. Replacing the polymer by an organic ferroelectric substrate could enhance the efficiency and allow switching of the electricity generation. Our microscopic understanding of the electricity generation process paves the way for the rational design of scalable and more efficient droplet-motion-based energy transducer devices.



قيم البحث

اقرأ أيضاً

Conventional wireless power transfer systems consist of a microwave power generator and a microwave power receiver separated by some distance. To realize efficient power transfer, the system is typically brought to resonance, and the coupled-antenna mode is optimized to reduce radiation into the surrounding space. In this scheme, any modification of the receiver position or of its electromagnetic properties results in the necessity of dynamically tuning the whole system to restore the resonant matching condition. It implies poor robustness to the receiver location and load impedance, as well as additional energy consumption in the control network. In this study, we introduce a new paradigm for wireless power delivery based on which the whole system, including transmitter and receiver and the space in between, forms a unified microwave power generator. In our proposed scenario the load itself becomes part of the generator. Microwave oscillations are created directly at the receiver location, eliminating the need for dynamical tuning of the system within the range of the self-oscillation regime. The proposed concept has relevant connections with the recent interest in parity-time symmetric systems, in which balanced loss and gain distributions enable unusual electromagnetic responses.
177 - R. Tsekov 2012
A simple non-local theoretical model is developed considering concentrated ionic surfactant solutions as regular ones. Their thermodynamics is described by the Cahn-Hilliard theory coupled with electrostatics. It is discovered that unstable solutions possess two critical temperatures, where the temperature coefficients of all characteristic lengths are discontinuous. At temperatures below the lower critical temperature ionic surfactant solutions separate into thin layers of oppositely charged liquids spread across the whole system and the electric potential is strictly periodic. At temperatures between the two critical temperatures separation can occur only near the solution surface thus leading to an oscillatory-decaying electric double layer. At temperatures above the higher critical temperature as well as in stable solutions there is no separation and the electric potential decays exponentially.
Ionic transports in nanopores hold the key to unlocking the full potential of bi-continuous nanoporous (NP) metals as advanced electrodes in electrochemical devices. The precise control of the uniform NP metal structures also provides us a unique opp ortunity to understand how complex structures determine transports at nanoscales. For NP Au from the dealloying of a Ag-Au alloy, we can tune the pore size in the range of 13 nm to 2.4 microns and the porosity between 38% and 69% via isothermal coarsening. For NP Ag from the reduction-induced decomposition of AgCl, we can control additionally its structural hierarchy and pore orientation. We measure the effective ionic conductivities of 1 M NaClO4 through these NP metals as membranes, which range from 7% to 44% of that of a free solution, corresponding to calculated pore tortuosities between 2.7 and 1.3. The tortuosity of NP Au displays weak dependences on both the pore size and the porosity, consistent with the observed self-similarity in the coarsening, except for those of pores < 25 nm, which we consider deviating from the well-coarsened pore geometry. For NP Ag, the low tortuosity of the hierarchical structure can be explained with the Maxwell-Garnett equation and that of the oriented structure underlines the random orientation as the cause of slow transport in other NP metals. At last, we achieve high current densities of CO2 reduction with these two low-tortuosity NP Ags, demonstrating the significance of the structure-transport relationships for designing functional NP metals.
The electrification revolution in automobile industry and others demands annual production capacity of batteries at least on the order of 102 gigawatts hours, which presents a twofold challenge to supply of key materials such as cobalt and nickel and to recycling when the batteries retire. Pyrometallurgical and hydrometallurgical recycling are currently used in industry but suffer from complexity, high costs, and secondary pollution. Here we report a direct-recycling method in molten salts (MSDR) that is environmentally benign and value-creating based on a techno-economic analysis using real-world data and price information. We also experimentally demonstrate the feasibility of MSDR by upcycling a low-nickel polycrystalline LiNi0.5Mn0.3Co0.2O2 (NMC) cathode material that is widely used in early-year electric vehicles into Ni-rich (Ni > 65%) single-crystal NMCs with increased energy-density (>10% increase) and outstanding electrochemical performance (>94% capacity retention after 500 cycles in pouch-type full cells). This work opens up new opportunities for closed-loop recycling of electric vehicle batteries and manufacturing of next-generation NMC cathode materials.
We demonstrate that polymer composites with a low loading of graphene, below 1.2 wt. %, are efficient as electromagnetic absorbers in the THz frequency range. The epoxy-based graphene composites were tested at frequencies from 0.25 THz to 4 THz, reve aling total shielding effectiveness of 85 dB (1 mm thickness) with graphene loading of 1.2 wt. % at the frequency f=1.6 THz. The THz radiation is mostly blocked by absorption rather than reflection. The efficiency of the THz radiation shielding by the lightweight, electrically insulating composites, increases with increasing frequency. Our results suggest that even the thin-film or spray coatings of graphene composites with thickness in the few-hundred-micrometer range can be sufficient for blocking THz radiation in many practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا