ﻻ يوجد ملخص باللغة العربية
A simple non-local theoretical model is developed considering concentrated ionic surfactant solutions as regular ones. Their thermodynamics is described by the Cahn-Hilliard theory coupled with electrostatics. It is discovered that unstable solutions possess two critical temperatures, where the temperature coefficients of all characteristic lengths are discontinuous. At temperatures below the lower critical temperature ionic surfactant solutions separate into thin layers of oppositely charged liquids spread across the whole system and the electric potential is strictly periodic. At temperatures between the two critical temperatures separation can occur only near the solution surface thus leading to an oscillatory-decaying electric double layer. At temperatures above the higher critical temperature as well as in stable solutions there is no separation and the electric potential decays exponentially.
The electric double layer (EDL) formed around charged nanostructures at the liquid-solid interface determines their electrochemical activity and influences their electrical and optical polarizability. We experimentally demonstrate that restructuring
A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Ch
Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between diel
This work shows that bulk ionic liquids (ILs) and their water solution can be conveniently investigated by synchrotron-based UV resonance Raman (UVRR) spectroscopy. The main advantages of this technique for the investigation of the local structure an
We have applied recent machine learning advances, deep convolutional neural network, to three-dimensional (voxels) soft matter data, generated by Molecular Dynamics computer simulation. We have focused on the structural and phase properties of a coar