ترغب بنشر مسار تعليمي؟ اضغط هنا

A combinatorial model for computing volumes of flow polytopes

77   0   0.0 ( 0 )
 نشر من قبل Christopher Hanusa
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergnes generalization of a volume formula originally due to Lidskii. We recover known flow polytope volume formulas and prove new volume formulas for flow polytopes that were seemingly unapproachable. A highlight of our model is an elegant formula for the flow polytope of a graph we call the caracol graph. As by-products of our work, we uncover a new triangle of numbers that interpolates between Catalan numbers and the number of parking functions, we prove the log-concavity of rows of this triangle along with other sequences derived from volume computations, and we introduce a new Ehrhart-like polynomial for flow polytope volume and conjecture product formulas for the polytopes we consider.

قيم البحث

اقرأ أيضاً

We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of $M$. Our proofs are based on a natural extension of Postnikovs theory of generalized permutohedra.
In an earlier paper, the first two authors defined orientations on hypergraphs. Using this definition we provide an explicit bijection between acyclic orientations in hypergraphs and faces of hypergraphic polytopes. This allows us to obtain a geometr ic interpretation of the coefficients of the antipode map in a Hopf algebra of hypergraphs. This interpretation differs from similar ones for a different Hopf structure on hypergraphs provided recently by Aguiar and Ardila. Furthermore, making use of the tools and definitions developed here regarding orientations of hypergraphs we provide a characterization of hypergraphs giving rise to simple hypergraphic polytopes in terms of acyclic orientations of the hypergraph. In particular, we recover this fact for the nestohedra and the hyper-permutahedra, and prove it for generalized Pitman-Stanley polytopes as defined here.
Matching fields were introduced by Sturmfels and Zelevinsky to study certain Newton polytopes and more recently have been shown to give rise to toric degenerations of various families of varieties. Whenever a matching field gives rise to a toric dege neration, the associated polytope of the toric variety coincides with the matching field polytope. We study combinatorial mutations, which are analogues of cluster mutations for polytopes, of matching field polytopes and show that the property of giving rise to a toric degeneration of the Grassmannians, is preserved by mutation. Moreover the polytopes arising through mutations are Newton-Okounkov bodies for the Grassmannians with respect to certain full-rank valuations. We produce a large family of such polytopes, extending the family of so-called block diagonal matching fields.
It is known that the coordinate ring of the Grassmannian has a cluster structure, which is induced from the combinatorial structure of a plabic graph. A plabic graph is a certain bipartite graph described on the disk, and there is a family of plabic graphs giving a cluster structure of the same Grassmannian. Such plabic graphs are related by the operation called square move which can be considered as the mutation in cluster theory. By using a plabic graph, we also obtain the Newton-Okounkov polytope which gives a toric degeneration of the Grassmannian. The purposes of this article is to survey these phenomena and observe the behavior of Newton-Okounkov polytopes under the operation called the combinatorial mutation of polytopes. In particular, we reinterpret some operations defined for Newton-Okounkov polytopes using the combinatorial mutation.
Suppose we choose $N$ points uniformly randomly from a convex body in $d$ dimensions. How large must $N$ be, asymptotically with respect to $d$, so that the convex hull of the points is nearly as large as the convex body itself? It was shown by Dyer- Furedi-McDiarmid that exponentially many samples suffice when the convex body is the hypercube, and by Pivovarov that the Euclidean ball demands roughly $d^{d/2}$ samples. We show that when the convex body is the simplex, exponentially many samples suffice; this then implies the same result for any convex simplicial polytope with at most exponentially many faces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا