ﻻ يوجد ملخص باللغة العربية
Here we present CaosDB, a Research Data Management System (RDMS) designed to ensure seamless integration of inhomogeneous data sources and repositories of legacy data. Its primary purpose is the management of data from biomedical sciences, both from simulations and experiments during the complete research data lifecycle. An RDMS for this domain faces particular challenges: Research data arise in huge amounts, from a wide variety of sources, and traverse a highly branched path of further processing. To be accepted by its users, an RDMS must be built around workflows of the scientists and practices and thus support changes in workflow and data structure. Nevertheless it should encourage and support the development and observation of standards and furthermore facilitate the automation of data acquisition and processing with specialized software. The storage data model of an RDMS must reflect these complexities with appropriate semantics and ontologies while offering simple methods for finding, retrieving, and understanding relevant data. We show how CaosDB responds to these challenges and give an overview of the CaosDB Server, its data model and its easy-to-learn CaosDB Query Language. We briefly discuss the status of the implementation, how we currently use CaosDB, and how we plan to use and extend it.
In April 2016, a community of researchers working in the area of Principles of Data Management (PDM) joined in a workshop at the Dagstuhl Castle in Germany. The workshop was organized jointly by the Executive Committee of the ACM Symposium on Princip
Energy costs are quickly rising in large-scale data centers and are soon projected to overtake the cost of hardware. As a result, data center operators have recently started turning into using more energy-friendly hardware. Despite the growing body o
We describe the current state and future plans for a set of tools for scientific data management (SDM) designed to support scientific transparency and reproducible research. SDM has been in active use at our MRI Center for more than two years. We des
Scientific workflows are a cornerstone of modern scientific computing, and they have underpinned some of the most significant discoveries of the last decade. Many of these workflows have high computational, storage, and/or communication demands, and
One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of su