ﻻ يوجد ملخص باللغة العربية
Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.
In this paper, a theoretical approach, comprising the non-equilibrium Greens function method for electronic transport and Landau-Khalatnikov equation for electric polarization dynamics, is presented to describe polarization-dependent tunneling electr
The current-voltage ($IV$) characteristics beyond the linear response regime of magnetic tunnel junction (MTJ) is systematically investigated. We find a clear negative correlation between the two coefficients to characterize the linear ($I$$propto$$V
Magnetic tunnel junctions are nanoscale spintronic devices with microwave generation and detection capabilities. Here we use the rectification effect called spin-diode in a magnetic tunnel junction to wirelessly detect the microwave emission of anoth
Magnetic tunnel junctions (MTJs) are basic building blocks for devices such as magnetic random access memories (MRAMs). The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of MTJs crucial for e
We calculate the conductance through double junctions of the type M(inf.)-Sn-Mm-Sn-M(inf.) and triple junctions of the type M(inf.)-Sn-Mm-Sn-Mm-Sn-M(inf.), where M(inf.) are semi-infinite metallic electrodes, Sn are n layers of semiconductor and Mm a