ﻻ يوجد ملخص باللغة العربية
By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe$_2$ has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p-orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV respectively. Our calculations indicate that such behaviour is driven by the band deformation potential, which is a result of our observed anisotropic strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory (DFT) agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between doping and strain, as well as for large-scale two-dimensional straintronics.
We have performed angle-resolved photoemission spectroscopy on transition-metal dichalcogenide 1$T$-HfTe$_2$ to elucidate the evolution of electronic states upon potassium (K) deposition. In pristine HfTe$_2$, an in-plane hole pocket and electron poc
The electronic structure of bulk GaAs$_{1-x}$Bi$_x$ systems for different atomic configurations and Bi concentrations is calculated using density functional theory. The results show a Bi-induced splitting between the light-hole and heavy-hole bands a
We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar r
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is obse
Synchrotron-based angle-resolved photoemission spectroscopy is used to determine the electronic structure of layered SnSe, which was recently turned out to be a potential thermoelectric material. We observe that the top of the valence band consists o