ﻻ يوجد ملخص باللغة العربية
We investigate, via numerical simulation, heat transport in the nonequilibrium stationary state (NESS) of the 1D classical Toda chain with an additional pinning potential, which destroys momentum conservation. The NESS is produced by coupling the system, via Langevin dynamics, to two reservoirs at different temperatures. To our surprise, we find that when the pinning is harmonic, the transport is ballistic. We also find that on a periodic ring with nonequilibrium initial conditions and no reservoirs, the energy current oscillates without decay. Lastly, Poincare sections of the 3-body case indicate that for all tested initial conditions, the dynamics occur on a 3-dimensional manifold. These observations suggest that the $N$-body Toda chain with harmonic pinning may be integrable. Alternatively, and more likely, this would be an example of a nonintegrable system without momentum conservation for which the heat flux is ballistic - contrary to all current expectations.
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
We consider the Fermi-Pasta-Ulam-Tsingou (FPUT) chain composed by $N gg 1$ particles and periodic boundary conditions, and endow the phase space with the Gibbs measure at small temperature $beta^{-1}$. Given a fixed ${1leq m ll N}$, we prove that the
We study the open version of the su$(m|n)$ supersymmetric Haldane-Shastry spin chain associated to the $BC_N$ extended root system. We first evaluate the models partition function by modding out the dynamical degrees of freedom of the su$(m|n)$ super
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide
We study the ballistic transport in integrable lattice models, i.e., the spin XXZ and Hubbard chains, close to the noninteracting limit. The stiffnesses of spin and charge currents reveal, at high temperatures, a discontinuous reduction (jump) when t