ﻻ يوجد ملخص باللغة العربية
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle 2 observations of the 1.3 mm dust continuum emission of the protoplanetary disc surrounding the T Tauri star Elias 24 with an angular resolution of $sim 0.2$ ($sim 28$ au). The dust continuum emission map reveals a dark ring at a radial distance of $0.47$ ($sim 65$ au) from the central star, surrounded by a bright ring at $0.58$ ($sim 81$ au). In the outer disc, the radial intensity profile shows two inflection points at $0.71$ and $0.87$ ($sim 99$ and $121$ au respectively). We perform global three-dimensional smoothed particle hydrodynamic gas/dust simulations of discs hosting a migrating and accreting planet. Combining the dust density maps of small and large grains with three dimensional radiative transfer calculations, we produce synthetic ALMA observations of a variety of disc models in order to reproduce the gap- and ring-like features observed in Elias 24. We find that the dust emission across the disc is consistent with the presence of an embedded planet with a mass of $sim 0.7, mathrm{M_{mathrm{J}}}$ at an orbital radius of $sim$ 60 au. Our model suggests that the two inflection points in the radial intensity profile are due to the inward radial motion of large dust grains from the outer disc. The surface brightness map of our disc model provides a reasonable match to the gap- and ring-like structures observed in Elias 24, with an average discrepancy of $sim$ 5% of the observed fluxes around the gap region.
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observation
While detecting low mass exoplanets at tens of au is beyond current instrumentation, debris discs provide a unique opportunity to study the outer regions of planetary systems. Here we report new ALMA observations of the 80-200 Myr old Solar analogue
In the last few years, multiwavelength observations have revealed the ubiquity of gaps/rings in circumstellar discs. Here we report the first ALMA observations of HD 92945 at 0.86 mm, that reveal a gap at about 73$pm$3 au within a broad disc of plane
It has been recently suggested that the multiple concentric rings and gaps discovered by ALMA in many protoplanetary disks may be produced by a single planet, as a result of the complex propagation and dissipation of the multiple spiral density waves
The young star Elias 2-27 has recently been observed to posses a massive circumstellar disc with two prominent large-scale spiral arms. In this Letter we perform three-dimensional Smoothed Particle Hydrodynamics simulations, radiative transfer modell