ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of the spiral morphology in the Elias 2-27 circumstellar disc

121   0   0.0 ( 0 )
 نشر من قبل Farzana Meru
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The young star Elias 2-27 has recently been observed to posses a massive circumstellar disc with two prominent large-scale spiral arms. In this Letter we perform three-dimensional Smoothed Particle Hydrodynamics simulations, radiative transfer modelling, synthetic ALMA imaging and an unsharped masking technique to explore three possibilities for the origin of the observed structures -- an undetected companion either internal or external to the spirals, and a self-gravitating disc. We find that a gravitationally unstable disc and a disc with an external companion can produce morphology that is consistent with the observations. In addition, for the latter, we find that the companion could be a relatively massive planetary mass companion (less than approximately 10 - 13 MJup) and located at large radial distances (between approximately 300 - 700 au). We therefore suggest that Elias 2-27 may be one of the first detections of a disc undergoing gravitational instabilities, or a disc that has recently undergone fragmentation to produce a massive companion.

قيم البحث

اقرأ أيضاً

Recent multi-wavelength ALMA observations of the protoplanetary disk orbiting around Elias 2-27 revealed a two armed spiral structure. The observed morphology together with the young age of the star and the disk-to-star mass ratio estimated from dust continuum emission make this system a perfect laboratory to investigate the role of self-gravity in the early phases of star formation. This is particularly interesting if we consider that gravitational instabilities could be a fundamental first step for the formation of planetesimals and planets. In this Letter, we model the rotation curve obtained by CO data of Elias 2-27 with a theoretical rotation curve including both the disk self-gravity and the star contribution to the gravitational potential. We compare this model with a purely Keplerian one and with a simple power-law function. We find that (especially for the $^{13}$CO isotopologue) the rotation curve is better described by considering not only the star, but also the disk self-gravity. We are thus able to obtain for the first time a dynamical estimate of the disk mass of $0.08pm0.04,M_{odot}$ and the star mass of $0.46pm0.03,M_{odot}$ (in the more general case), the latter being comparable with previous estimates. From these values, we derive that the disk is 17$%$ of the star mass, meaning that it could be prone to gravitational instabilities. This result would strongly support the hypothesis that the two spiral arms are generated by gravitational instabilities.
To determine the origin of the spiral structure observed in the dust continuum emission of Elias 2-27 we analyze multi-wavelength continuum ALMA data with a resolution of $sim$0.2 arcsec ($sim$23au) at 0.89, 1.3 and 3.3mm. We also study the kinematic s of the disk with $^{13}$CO and C$^{18}$O ALMA observations in the $J=$3-2 transition. The spiral arm morphology is recovered at all wavelengths in the dust continuum observations, where we measure contrast and spectral index variations along the spiral arms and detect subtle dust-trapping signatures. We determine that the emission from the midplane is cold and interpret the optical depth results as signatures of a higher disk mass than previous constraints. From the gas data, we search for deviations from Keplerian motion and trace the morphology of the emitting surfaces and the velocity profiles. We find an azimuthally varying emission layer height in the system, large-scale emission surrounding the disk, and strong perturbations in the channel maps, co-located with the spirals. Additionally, we develop multigrain dust and gas SPH simulations of a gravitationally unstable disk and compare them to the observations. Given the large scale emission and highly perturbed gas structure, together with the comparison of continuum observations to theoretical predictions, we propose infall-triggered gravitational instabilities as origin for the observed spiral structure.
62 - G. Dipierro , L. Ricci , L. Perez 2018
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle 2 observations of the 1.3 mm dust continuum emission of the protoplanetary disc surrounding the T Tauri star Elias 24 with an angular resolution of $sim 0.2$ ($sim 28$ au). The dus t continuum emission map reveals a dark ring at a radial distance of $0.47$ ($sim 65$ au) from the central star, surrounded by a bright ring at $0.58$ ($sim 81$ au). In the outer disc, the radial intensity profile shows two inflection points at $0.71$ and $0.87$ ($sim 99$ and $121$ au respectively). We perform global three-dimensional smoothed particle hydrodynamic gas/dust simulations of discs hosting a migrating and accreting planet. Combining the dust density maps of small and large grains with three dimensional radiative transfer calculations, we produce synthetic ALMA observations of a variety of disc models in order to reproduce the gap- and ring-like features observed in Elias 24. We find that the dust emission across the disc is consistent with the presence of an embedded planet with a mass of $sim 0.7, mathrm{M_{mathrm{J}}}$ at an orbital radius of $sim$ 60 au. Our model suggests that the two inflection points in the radial intensity profile are due to the inward radial motion of large dust grains from the outer disc. The surface brightness map of our disc model provides a reasonable match to the gap- and ring-like structures observed in Elias 24, with an average discrepancy of $sim$ 5% of the observed fluxes around the gap region.
Spiral arms in protoplanetary discs are thought to be linked to the presence of companions. We test the hypothesis that the double spiral arm morphology observed in the transition disc MWC 758 can be generated by an $approx 10$ M$_{rm Jup}$ companion on an eccentric orbit internal to the spiral arms. Previous studies on MWC 758 have assumed an external companion. We compare simulated observations from three dimensional hydrodynamics simulations of disc-companion interaction to scattered light, infrared and CO molecular line observations, taking into account observational biases. The inner companion hypothesis is found to explain the double spiral arms, as well as several additional features seen in MWC 758 -- the arc in the northwest, substructures inside the spiral arms, the cavity in CO isotopologues, and the twist in the kinematics. Testable predictions include detection of fainter spiral structure, detection of a point source south-southeast of the primary, and proper motion of the spiral arms.
Given that the macromolecular building blocks of life were likely produced photochemically in the presence of ultraviolet (UV) light, we identify some general constraints on which stars produce sufficient UV for this photochemistry. We estimate how m uch light is needed for the UV photochemistry by experimentally measuring the rate constant for the UV chemistry (`light chemistry, needed for prebiotic synthesis) versus the rate constants for the bimolecular reactions that happen in the absence of the UV light (`dark chemistry). We make these measurements for representative photochemical reactions involving SO$_3^{2-}$ and HS$^-$. By balancing the rates for the light and dark chemistry, we delineate the abiogenesis zones around stars of different stellar types based on whether their UV fluxes are sufficient for building up this macromolecular prebiotic inventory. We find that the SO$_3^{2-}$ light chemistry is rapid enough to build up the prebiotic inventory for stars hotter than K5 (4400 K). We show how the abiogenesis zone overlaps with the liquid water habitable zone. Stars cooler than K5 may also drive the formation of these building blocks if they are very active. The HS$^-$ light chemistry is too slow to work even for the Early Earth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا