ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Determination of the Dynamical Polarizability of Dysprosium

102   0   0.0 ( 0 )
 نشر من قبل Cornelis Ravensbergen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a measurement of the dynamical polarizability of dysprosium atoms in their electronic ground state at the optical wavelength of 1064 nm, which is of particular interest for laser trapping experiments. Our method is based on collective oscillations in an optical dipole trap, and reaches unprecedented accuracy and precision by comparison with an alkali atom (potassium) as a reference species. We obtain values of 184.4(2.4) a.u. and 1.7(6) a.u. for the scalar and tensor polarizability, respectively. Our experiments have reached a level that permits meaningful tests of current theo- retical descriptions and provides valuable information for future experiments utilizing the intriguing properties of heavy lanthanide atoms.

قيم البحث

اقرأ أيضاً

We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Alth ough the polarizability can vary by more than 30%, a magic angle between the laser polarization and the quantization axis is found where the polarizability of the $|N=0,m_N=0>$ and the $|N=1,m_N=0>$ states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.
100 - B. K. Sahoo 2021
We present electric dipole polarizabilities ($alpha_d$) of the alkali-metal negative ions, from H$^-$ to Fr$^-$, by employing four-component relativistic many-body methods. Differences in the results are shown by considering Dirac-Coulomb (DC) Hamilt onian, DC Hamiltonian with the Breit interaction, and DC Hamiltonian with the lower-order quantum electrodynamics interactions. At first, these interactions are included self-consistently in the Dirac-Hartree-Fock (DHF) method, and then electron correlation effects are incorporated over the DHF wave functions in the second-order many-body perturbation theory, random phase approximation and coupled-cluster (CC) theory. Roles of electron correlation effects and relativistic corrections are analyzed using the above many-body methods with size of the ions. We finally quote precise values of $alpha_d$ of the above negative ions by estimating uncertainties to the CC results, and compare them with other calculations wherever available.
We present measurements of the dynamical structure factor $S(q,omega)$ of an interacting one-dimensional (1D) Fermi gas for small excitation energies. We use the two lowest hyperfine levels of the $^6$Li atom to form a pseudo-spin-1/2 system whose s- wave interactions are tunable via a Feshbach resonance. The atoms are confined to 1D by a two-dimensional optical lattice. Bragg spectroscopy is used to measure a response of the gas to density (charge) mode excitations at a momentum $q$ and frequency $omega$. The spectrum is obtained by varying $omega$, while the angle between two laser beams determines $q$, which is fixed to be less than the Fermi momentum $k_textrm{F}$. The measurements agree well with Tomonaga-Luttinger theory.
184 - B. Andreas , Y. Azuma , G. Bartl 2010
The Avogadro constant links the atomic and the macroscopic properties of matter. Since the molar Planck constant is well known via the measurement of the Rydberg constant, it is also closely related to the Planck constant. In addition, its accurate d etermination is of paramount importance for a definition of the kilogram in terms of a fundamental constant. We describe a new approach for its determination by counting the atoms in 1 kg single-crystal spheres, which are highly enriched with the 28Si isotope. It enabled isotope dilution mass spectroscopy to determine the molar mass of the silicon crystal with unprecedented accuracy. The value obtained, 6.02214084(18) x 10^23 mol^-1, is the most accurate input datum for a new definition of the kilogram.
Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. Well known examples are crystalline solids or Coulomb crystals in ion traps. In those systems, crystallization proceeds via a classical tr ansition, driven by thermal fluctuations. In contrast, ensembles of ultracold atoms laser-excited to Rydberg states provide a well-controlled quantum system, in which a crystalline phase transition governed by quantum fluctuations can be explored. Here we report on the experimental preparation of the crystalline states in such a Rydberg many-body system. Fast coherent control on the many-body level is achieved via numerically optimized laser excitation pulses. We observe an excitation-number staircase as a function of the system size and show directly the emergence of incompressible ordered states on its steps. Our results demonstrate the applicability of quantum optical control techniques in strongly interacting systems, paving the way towards the investigation of novel quantum phases in long-range interacting quantum systems, as well as for detailed studies of their coherence and correlation properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا