ترغب بنشر مسار تعليمي؟ اضغط هنا

An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal

185   0   0.0 ( 0 )
 نشر من قبل Giovanni Mana
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Avogadro constant links the atomic and the macroscopic properties of matter. Since the molar Planck constant is well known via the measurement of the Rydberg constant, it is also closely related to the Planck constant. In addition, its accurate determination is of paramount importance for a definition of the kilogram in terms of a fundamental constant. We describe a new approach for its determination by counting the atoms in 1 kg single-crystal spheres, which are highly enriched with the 28Si isotope. It enabled isotope dilution mass spectroscopy to determine the molar mass of the silicon crystal with unprecedented accuracy. The value obtained, 6.02214084(18) x 10^23 mol^-1, is the most accurate input datum for a new definition of the kilogram.

قيم البحث

اقرأ أيضاً

89 - Beno^it Darquie 2015
Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 $mu$m enables a determinati on of the Boltzmann constant k B. We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B, an exciting prospect considering the upcoming redefinition of the International System of Units.
In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This o ptical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.
We report a measurement of the dynamical polarizability of dysprosium atoms in their electronic ground state at the optical wavelength of 1064 nm, which is of particular interest for laser trapping experiments. Our method is based on collective oscil lations in an optical dipole trap, and reaches unprecedented accuracy and precision by comparison with an alkali atom (potassium) as a reference species. We obtain values of 184.4(2.4) a.u. and 1.7(6) a.u. for the scalar and tensor polarizability, respectively. Our experiments have reached a level that permits meaningful tests of current theo- retical descriptions and provides valuable information for future experiments utilizing the intriguing properties of heavy lanthanide atoms.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879 (5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks wi th neutral atoms in free fall. Two previous measurements of this transition were found to disagree by about 2x10^{-13}, i.e. almost four times the combined error bar, instilling doubt on the potential of optical lattice clocks to perform at a high accuracy level. In perfect agreement with one of these two values, our measurement essentially dissipates this doubt.
Local bond order parameters based on spherical harmonics, also known as Steinhardt order parameters, are often used to determine crystal structures in molecular simulations. Here we propose a modification of this method in which the complex bond orde r vectors are averaged over the first neighbor shell of a given particle and the particle itself. As demonstrated using soft particle systems, this averaging procedure considerably improves the accuracy with which different crystal structures can be distinguished.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا