ﻻ يوجد ملخص باللغة العربية
The location of broken insulators in aerial images is a challenging task. This paper, focusing on the self-blast glass insulator, proposes a deep learning solution. We address the broken insulators location problem as a low signal-noise-ratio image location framework with two modules: 1) object detection based on Fast R-CNN, and 2) classification of pixels based on U-net. A diverse aerial image set of some grid in China is tested to validated the proposed approach. Furthermore, a comparison is made among different methods and the result shows that our approach is accurate and real-time.
In this paper, we propose a novel heart segmentation pipeline Combining Faster R-CNN and U-net Network (CFUN). Due to Faster R-CNNs precise localization ability and U-nets powerful segmentation ability, CFUN needs only one-step detection and segmenta
360{deg} images are usually represented in either equirectangular projection (ERP) or multiple perspective projections. Different from the flat 2D images, the detection task is challenging for 360{deg} images due to the distortion of ERP and the inef
With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of
This paper introduces a Deep Learning Convolutional Neural Network model based on Faster-RCNN for motorcycle detection and classification on urban environments. The model is evaluated in occluded scenarios where more than 60% of the vehicles present
Modern deep learning-based models have seen outstanding performance improvement with speech enhancement tasks. The number of parameters of state-of-the-art models, however, is often too large to be deployed on devices for real-world applications. To