ﻻ يوجد ملخص باللغة العربية
We investigate the performance of large area radiation detectors, with high energy- and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (5050 mm2) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 88 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm2), with a pixel size of 66 mm2, we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thicknesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where both optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, se use our MC code to explore the impact of different a photosensor segmentation (pixel size and granularity) on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 33 mm2.
The Lanthanum Halide scintillator detectors have been widely used for nuclear spectroscopy experiments because of their excellent energy and time resolutions. Despite having these advantages, the intrinsic alpha and beta contaminations in these scint
We report the long term performance of the photosensors, 143 one-inch R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the first phase of the PandaX dual-phase xenon dark matter experiment. This is the first time that a sign
Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT replace
We have developed a neutron imaging sensor based on an INTPIX4-SOI pixelated silicon device. Neutron irradiation tests are performed at several neutron facilities to investigate sensors responses for neutrons. Detection efficiency is measured to be a
As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for bo