ﻻ يوجد ملخص باللغة العربية
The peculiar velocities of galaxies cause their redshift-space clustering to depend on the angle to the line-of-sight, providing a key test of gravitational physics on cosmological scales. These effects may be described using a multipole expansion of the clustering measurements. Focussing on Fourier-space statistics, we present a new analysis of the effect of the survey window function, and the variation of the line-of-sight across a survey, on the modelling of power spectrum multipoles. We determine the joint covariance of the Fourier-space multipoles in a Gaussian approximation, and indicate how these techniques may be extended to studies of overlapping galaxy populations via multipole cross-power spectra. We apply our methodology to one of the widest-area galaxy redshift surveys currently available, the 6-degree Field Galaxy Survey, deducing a normalized growth rate f*sigma_8(z=0.06) = 0.38 +/- 0.12 in the low-redshift Universe, in agreement with previous analyses of this dataset using different techniques. Our framework should be useful for processing future wide-angle galaxy redshift surveys.
This thesis presents the analysis of the clustering of galaxies in the 6dF Galaxy Survey (6dFGS). At large separation scales the baryon acoustic oscillation (BAO) signal is detected which allows to make an absolute distance measurement at $z_{rm eff}
Low redshift measurements of Baryon Acoustic Oscillations (BAO) test the late time evolution of the Universe and are a vital probe of Dark Energy. Over the past decade both the 6-degree Field Galaxy Survey (6dFGS) and Sloan Digital Sky Survey (SDSS)
One of the cornerstones of general relativity is the equivalence principle. However, the validity of the equivalence principle has only been established on solar system scales for standard matter fields; this result cannot be assumed to hold for the
The LOFAR Two-metre Sky Survey (LoTSS) is ongoing and plans to map the complete Northern sky in the future. The source catalogue from the public LoTSS first data release covers 1% of the sky and is known to show some correlated noise or fluctuations
Imaging billions of galaxies every few nights during ten years, LSST should be a major contributor to precision cosmology in the 2020 decade. High precision photometric data will be available in six bands, from near-infrared to near-ultraviolet. The