ترغب بنشر مسار تعليمي؟ اضغط هنا

Power spectrum multipoles on the curved sky: an application to the 6-degree Field Galaxy Survey

81   0   0.0 ( 0 )
 نشر من قبل Chris Blake
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The peculiar velocities of galaxies cause their redshift-space clustering to depend on the angle to the line-of-sight, providing a key test of gravitational physics on cosmological scales. These effects may be described using a multipole expansion of the clustering measurements. Focussing on Fourier-space statistics, we present a new analysis of the effect of the survey window function, and the variation of the line-of-sight across a survey, on the modelling of power spectrum multipoles. We determine the joint covariance of the Fourier-space multipoles in a Gaussian approximation, and indicate how these techniques may be extended to studies of overlapping galaxy populations via multipole cross-power spectra. We apply our methodology to one of the widest-area galaxy redshift surveys currently available, the 6-degree Field Galaxy Survey, deducing a normalized growth rate f*sigma_8(z=0.06) = 0.38 +/- 0.12 in the low-redshift Universe, in agreement with previous analyses of this dataset using different techniques. Our framework should be useful for processing future wide-angle galaxy redshift surveys.



قيم البحث

اقرأ أيضاً

94 - Florian Beutler 2013
This thesis presents the analysis of the clustering of galaxies in the 6dF Galaxy Survey (6dFGS). At large separation scales the baryon acoustic oscillation (BAO) signal is detected which allows to make an absolute distance measurement at $z_{rm eff} = 0.106$. Such a measurement can be used to constrain the Hubble constant, $H_0 = 67.0pm3.2;$km s$^{-1};$Mpc$^{-1}$ (4.8% precision). Modelling the 2D galaxy correlation function of 6dFGS, $xi(r_p,pi)$, allows a measure of the parameter combination $f(z_{rm eff})sigma_8(z_{rm eff}) = 0.423 pm 0.055$, where $f simeq Omega_m^{gamma}(z)$ is the growth rate of cosmic structure and $sigma_8$ is the r.m.s. of matter fluctuations in $8h^{-1},$Mpc spheres. Such a measurement allows to test the relationship between matter and gravity on cosmic scales by constraining the growth index of density fluctuations, $gamma$. The 6dFGS measurement of $fsigma_8$ combined with WMAP-7, results in $gamma = 0.547 pm 0.088$, consistent with the prediction of General Relativity ($gamma_{rm GR} approx 0.55$). The last chapter of this thesis studies the stellar-mass dependence of galaxy clustering in the 6dF Galaxy Survey. Using the Halo Occupation Distribution (HOD) model, this analysis investigates the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, $w_p(r_p)$. The findings of this analysis are, that the typical halo mass ($M_1$) as well as the satellite power law index ($alpha$) increase with stellar mass. The 6dFGS results are compared to two different semi-analytic models derived from the Millennium Simulation, as well as weak lensing measurements.
Low redshift measurements of Baryon Acoustic Oscillations (BAO) test the late time evolution of the Universe and are a vital probe of Dark Energy. Over the past decade both the 6-degree Field Galaxy Survey (6dFGS) and Sloan Digital Sky Survey (SDSS) have provided important distance constraints at $z < 0.3$. In this paper we re-evaluate the cosmological information from the BAO detection in 6dFGS making use of HOD populated COLA mocks for a robust covariance matrix and taking advantage of the now commonly implemented technique of density field reconstruction. For the 6dFGS data, we find consistency with the previous analysis, and obtain an isotropic volume averaged distance measurement of $D_{V}(z_{mathrm{eff}}=0.097) = 372pm17(r_{s}/r_{s}^{mathrm{fid}}),mathrm{Mpc}$, which has a non-Gaussian likelihood outside the $1sigma$ region. We combine our measurement from both the post-reconstruction clustering of 6dFGS and SDSS MGS offering the most robust constraint to date in this redshift regime, $D_{V}(z_{mathrm{eff}}=0.122)=539pm17(r_{s}/r^{mathrm{fid}}_{s}),mathrm{Mpc}$. These measurements are consistent with standard $Lambdamathrm{CDM}$ and after fixing the standard ruler using a Planck prior on $Omega_{m}h^{2}$, the joint analysis gives $H_{0}=64.0pm3.5,mathrm{kms}^{-1}mathrm{Mpc}^{-1}$. In the near future both the Taipan Galaxy Survey and the Dark Energy Spectroscopic Instrument (DESI) will improve this measurement to $1%$ at low redshift.
One of the cornerstones of general relativity is the equivalence principle. However, the validity of the equivalence principle has only been established on solar system scales for standard matter fields; this result cannot be assumed to hold for the non-standard matter fields that dominate the gravitational dynamics on cosmological scales. Here we show how the equivalence principle may be tested on cosmological scales for non-standard matter fields using the odd multipoles of the galaxy cross-power spectrum and bispectrum. This test makes use of the imprint on the galaxy cross-power spectrum and bispectrum by the parity-violating general relativistic deformations of the past-light cone, and assumes that galaxies can be treated as test particles that are made of baryons and cold dark matter. This assumption leads to a non-zero galaxy-baryon relative velocity if the equivalence principle does not hold between baryons and dark matter. We show that the relative velocity can be constrained to be less than 28% of the galaxy velocity using the cross-power spectrum of the HI intensity mapping/H$alpha$ galaxy survey and the bispectrum of the H$alpha$ galaxy survey.
The LOFAR Two-metre Sky Survey (LoTSS) is ongoing and plans to map the complete Northern sky in the future. The source catalogue from the public LoTSS first data release covers 1% of the sky and is known to show some correlated noise or fluctuations of the flux density calibration over a few degree scale. Due to its unique and excellent design, observations from LOFAR are expected to be an excellent opportunity to study the distribution and evolution of the large-scale structure of the Universe in the future. We explore the LoTSS DR1 to understand the survey systematics and data quality of its very first data release. We produce catalog mocks to determine error estimates and with our detailed and careful analysis, we successfully recover the angular clustering statistics of LoTSS galaxies, which fits the $Lambda$CDM cosmology reasonably well. We employ a Markov chain Monte Carlo (MCMC) based Bayesian analysis and recover the best galaxy biasing scheme for LoTSS galaxies and also constrain the radial distribution of LoTSS DR1. After masking some noisy and uneven patches and with reasonable flux cuts, the LOFAR survey appears qualified for large-scale cosmological studies. The upcoming data releases from LOFAR are expected to be deeper and wider, thus will be more suitable for drawing cosmological implications.
Imaging billions of galaxies every few nights during ten years, LSST should be a major contributor to precision cosmology in the 2020 decade. High precision photometric data will be available in six bands, from near-infrared to near-ultraviolet. The computation of precise, unbiased, photometric redshifts up to z = 2, at least, is one of the main LSST challenges and its performance will have major impact on all extragalactic LSST sciences. We evaluate the efficiency of our photometric redshift reconstruction on mock galaxy catalogs up to z=2.45 and estimate the impact of realistic photometric redshift (hereafter photo-z) reconstruction on the large-scale structures (LSS) power spectrum and the baryonic acoustic oscillation (BAO) scale determination for a LSST-like photometric survey. We study the effectiveness of the BAO scale as a cosmological probe in the LSST survey. We have performed a detailed modelling of the photo-z distribution as a function of galaxy type, redshift and absolute magnitude using our photo-z reconstruction code with a quality selection cut based on a Boosted decision tree (BDT). We have computed the fractional error on the recovered power spectrum which is dominated by the shot-noise at z>1 for scales k>0.1, due to the photo-z damping. The BAO scale can be recovered with a percent or better accuracy level from z = 0.5 to z = 1.5 using realistic photo-z reconstruction. Outliers can represent a significant fraction of galaxies at z>2, causing bias and errors on LSS power spectrum measurement. Although the BAO scale is not the most powerful cosmological probe in LSST, it can be used to check the consistency of the LSS measurement. Moreover we show that the impact of photo-z smearing on the recovered isotropic BAO scale in LSST should stay limited up to z=1.5, so as long as the galaxy number density balances the photo-z smoothing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا