ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum phase transitions in spin-1 XXZ chains with rhombic single-ion anisotropy

77   0   0.0 ( 0 )
 نشر من قبل Jie Ren
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the fidelity susceptibility and the quantum coherence along with the entanglement entropy in the ground-state of one-dimensional spin-1 XXZ chains with the rhombic single-ion anisotropy. By using the techniques of density matrix renormalization group, effects of the rhombic single-ion anisotropy on a few information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y-N{e}el phase to the Large-$E_x$ or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap can be used to detect the critical points of quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy $Delta$ and the rhombic single-ion anisotropy $E$.



قيم البحث

اقرأ أيضاً

We investigate quantum phase transitions and quantum coherence in infinite biquadratic spin-1 and -2 XY chains with rhombic single-ion anisotropy. All considered coherence measures such as the $l_1$ norm of coherence, the relative entropy of coherenc e, and the quantum Jensen-Shannon divergence, and the quantum mutual information show consistently that singular behaviors occur for the spin-1 system, which enables to identity quantum phase transitions. For the spin-2 system, the relative entropy of coherence and the quantum mutual information properly detect no singular behavior in the whole system parameter range, while the $l_1$ norm of coherence and the quantum Jensen-Shannon divergence show a conflicting singular behavior of their first-order derivatives. Examining local magnetic moments and spin quadrupole moments lead to the explicit identification of novel orderings of spin quadrupole moments with zero magnetic moments in the whole parameter space. We find the three uniaxial spin nematic quadrupole phases for the spin-1 system and the two biaxial spin nematic phases for the spin-2 system. For the spin-2 system, the two orthogonal biaxial spin nematic states are connected adiabatically without an explicit phase transition, which can be called quantum crossover. The quantum crossover region is estimated by using the quantum fidelity. Whereas for the spin-1 system, the two discontinuous quantum phase transitions occur between three distinct uniaxial spin nematic phases. We discuss the quantum coherence measures and the quantum mutual information in connection with the quantum phase transitions including the quantum crossover.
We consider the dimerized spin-1 $XXZ$ chain with single-ion anisotropy $D$. In absence of an explicit dimerization there are three phases: a large-$D$, an antiferromagnetically ordered and a Haldane phase. This phase structure persists up to a criti cal dimerization, above which the Haldane phase disappears. We show that for weak dimerization the phases are separated by Gaussian and Ising quantum phase transitions. One of the Ising transitions terminates in a critical point in the universality class of the dilute Ising model. We comment on the relevance of our results to experiments on quasi-one-dimensional anisotropic spin-1 quantum magnets.
Recently, it has been proposed that higher-spin analogues of the Kitaev interactions $K>0$ may also occur in a number of materials with strong Hunds and spin-orbit coupling. In this work, we use Lanczos diagonalization and density matrix renormalizat ion group methods to investigate numerically the $S=1$ Kitaev-Heisenberg model. The ground-state phase diagram and quantum phase transitions are investigated by employing local and nonlocal spin correlations. We identified two ordered phases at negative Heisenberg coupling $J<0$: a~ferromagnetic phase with $langle S_i^zS_{i+1}^zrangle>0$ and an intermediate left-left-right-right phase with $langle S_i^xS_{i+1}^xrangle eq 0$. A~quantum spin liquid is stable near the Kitaev limit, while a topological Haldane phase is found for $J>0$.
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim in describing available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashis modified spin-wave theory. In particular, we study in detail the temperature vs. magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger Liquid phase, the ferrimagnetic plateau and the fully polarized one, and the respective quantum critical points and crossover lines.
We study spontaneous dimerization transitions in a Heisenberg spin-1 chain with additional next-nearest neighbor (NNN) and 3-site interactions using extensive numerical simulations and a conformal field theory analysis. We show that the transition ca n be second order in the WZW SU(2)$_2$ or Ising universality class, or first-order. We argue that these features are generic because of a marginal operator in the WZW SU(2)$_2$ model, and because of two topologically distinct non-dimerized phases with or without edge states. We also provide explicit numerical evidence of conformal towers of singlets inside the spin gap at the Ising transition. Implications for other models are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا