ترغب بنشر مسار تعليمي؟ اضغط هنا

On Partially Overlapping Coexistence for Dynamic Spectrum Access in Cognitive Radio

103   0   0.0 ( 0 )
 نشر من قبل Ebrahim Bedeer
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study partially overlapping co-existence scenarios in cognitive radio environment. We consider an Orthogonal Frequency Division Multiplexing (OFDM) cognitive system coexisting with a narrow-band (NB) and an OFDM primary system, respectively. We focus on finding the minimum frequency separation between the coexisting systems to meet a certain target BER. Windowing and nulling are used as simple techniques to reduce the OFDM out-of-band radiations, and, hence decrease the separation. The effect of these techniques on the OFDM spectral efficiency and PAPR is also studied.



قيم البحث

اقرأ أيضاً

148 - Jan Oksanen , Visa Koivunen 2017
In this paper a spectrum sensing policy employing recency-based exploration is proposed for cognitive radio networks. We formulate the problem of finding a spectrum sensing policy for multi-band dynamic spectrum access as a stochastic restless multi- armed bandit problem with stationary unknown reward distributions. In cognitive radio networks the multi-armed bandit problem arises when deciding where in the radio spectrum to look for idle frequencies that could be efficiently exploited for data transmission. We consider two models for the dynamics of the frequency bands: 1) the independent model where the state of the band evolves randomly independently from the past and 2) the Gilbert-Elliot model, where the states evolve according to a 2-state Markov chain. It is shown that in these conditions the proposed sensing policy attains asymptotically logarithmic weak regret. The policy proposed in this paper is an index policy, in which the index of a frequency band is comprised of a sample mean term and a recency-based exploration bonus term. The sample mean promotes spectrum exploitation whereas the exploration bonus encourages for further exploration for idle bands providing high data rates. The proposed recency based approach readily allows constructing the exploration bonus such that it will grow the time interval between consecutive sensing time instants of a suboptimal band exponentially, which then leads to logarithmically increasing weak regret. Simulation results confirming logarithmic weak regret are presented and it is found that the proposed policy provides often improved performance at low complexity over other state-of-the-art policies in the literature.
Due to the growing volume of data traffic produced by the surge of Internet of Things (IoT) devices, the demand for radio spectrum resources is approaching their limitation defined by Federal Communications Commission (FCC). To this end, Dynamic Spec trum Access (DSA) is considered as a promising technology to handle this spectrum scarcity. However, standard DSA techniques often rely on analytical modeling wireless networks, making its application intractable in under-measured network environments. Therefore, utilizing neural networks to approximate the network dynamics is an alternative approach. In this article, we introduce a Federated Learning (FL) based framework for the task of DSA, where FL is a distributive machine learning framework that can reserve the privacy of network terminals under heterogeneous data distributions. We discuss the opportunities, challenges, and opening problems of this framework. To evaluate its feasibility, we implement a Multi-Agent Reinforcement Learning (MARL)-based FL as a realization associated with its initial evaluation results.
In this paper, we propose the joint interference cancellation, fast fading channel estimation, and data symbol detection for a general interference setting where the interfering source and the interfered receiver are unsynchronized and occupy overlap ping channels of different bandwidths. The interference must be canceled before the channel estimation and data symbol detection of the desired communication are performed. To this end, we have to estimate the Effective Interference Coefficients (EICs) and then the desired fast fading channel coefficients. We construct a two-phase framework where the EICs and desired channel coefficients are estimated using the joint maximum likelihood-maximum a posteriori probability (JML-MAP) criteria in the first phase; and the MAP based data symbol detection is performed in the second phase. Based on this two-phase framework, we also propose an iterative algorithm for interference cancellation, channel estimation and data detection. We analyze the channel estimation error, residual interference, symbol error rate (SER) achieved by the proposed framework. We then discuss how to optimize the pilot density to achieve the maximum throughput. Via numerical studies, we show that our design can effectively mitigate the interference for a wide range of SNR values, our proposed channel estimation and symbol detection design can achieve better performances compared to the existing method. Moreover, we demonstrate the improved performance of the iterative algorithm with respect to the non-iterative counterpart.
145 - Xiang Tan , Li Zhou , Haijun Wang 2021
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought u pon by the historical command-and-control approach to spectrum allocation. In this paper, we investigate the distributed DSA problem for multi-user in a typical multi-channel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we proposed a centralized off-line training and distributed on-line execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of cognitive radio network in distributed fashion without coordination information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. From the simulation results, we can observe that the proposed algorithm can converge fast and achieve almost the optimal performance.
This article proposes a novel framework for unmaned aerial vehicle (UAV) networks with massive access capability supported by non-orthogonal multiple access (NOMA). In order to better understand NOMA enabled UAV networks, three case studies are carri ed out. We first provide performance evaluation of NOMA enabled UAV networks by adopting stochastic geometry to model the positions of UAVs and ground users. Then we investigate the joint trajectory design and power allocation for static NOMA users based on a simplified two-dimensional (2D) model that UAV is flying around at fixed height. As a further advance, we demonstrate the UAV placement issue with the aid of machine learning techniques when the ground users are roaming and the UAVs are capable of adjusting their positions in three-dimensions (3D) accordingly. With these case studies, we can comprehensively understand the UAV systems from fundamental theory to practical implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا