ﻻ يوجد ملخص باللغة العربية
A possible connection between extremely large magneto-resistance and the presence of Weyl points has garnered much attention in the study of topological semimetals. Exploration of these concepts in transition metal phosphide WP2 has been complicated by conflicting experimental reports. Here we combine angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to disentangle surface and bulk contributions to the ARPES intensity, the superposition of which has plagued the determination of the electronic structure in WP2. Our results show that while the hole- and electron-like Fermi surface sheets originating from surface states have different areas, the bulk-band structure of WP2 is electron-hole-compensated in agreement with DFT. Furthermore, the detailed band structure is compatible with the presence of at least 4 temperature-independent Weyl points, confirming the topological nature of WP2 and its stability against lattice distortions.
Weyl points, serving as monopoles in the momentum space and laying the foundation of topological gapless phases, have recently been experimentally demonstrated in various physical systems. However, none of the observed Weyl degeneracies are ideal: th
The transition metal dipnictides TaAs2 , TaSb2 , NbAs2 and NbSb2 have recently sparked interest for exhibiting giant magnetoresistance. While the exact nature of magnetoresistance in these materials is still under active investigation, there are expe
Combining tight-binding (TB) models with first-principles calculations, we investigate electronic and topological properties of plumbene. Different from the other two-dimensional (2D) topologically nontrivial insulators in group IVA (from graphene to
We study the occurrence of symmetry-enforced topological band crossings in tetragonal crystals with strong spin-orbit coupling. By computing the momentum dependence of the symmetry eigenvalues and the global band topology in the entire Brillouin zone