ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Uniform Windowed Decoding For Multi-Dimensional Spatially-Coupled LDPC Codes

310   0   0.0 ( 0 )
 نشر من قبل Lev Tauz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a non-uniform windowed decoder for multi-dimensional spatially-coupled LDPC (MD-SC-LDPC) codes over the binary erasure channel. An MD-SC-LDPC code is constructed by connecting together several SC-LDPC codes into one larger code that provides major benefits over a variety of channel models. In general, SC codes allow for low-latency windowed decoding. While a standard windowed decoder can be naively applied, such an approach does not fully utilize the unique structure of MD-SC-LDPC codes. In this paper, we propose and analyze a novel non-uniform decoder to provide more flexibility between latency and reliability. Our theoretical derivations and empirical results show that our non-uniform decoder greatly improves upon the standard windowed decoder in terms of design flexibility, latency, and complexity.



قيم البحث

اقرأ أيضاً

79 - Eshed Ram , Yuval Cassuto 2020
We study spatially coupled LDPC codes that allow access to sub-blocks much smaller than the full code block. Sub-block access is realized by a semi-global decoder that decodes a chosen target sub-block by only accessing the target, plus a prescribed number of helper sub-blocks adjacent in the code chain. This paper develops a theoretical methodology for analyzing the semi-global decoding performance of spatially coupled LDPC codes constructed from protographs. The main result shows that semi-global decoding thresholds can be derived from certain thresholds we define for the single-sub-block graph. These characterizing thresholds are also used for deriving lower bounds on the decoders performance over channels with variability across sub-blocks, which are motivated by applications in data-storage.
Linear nested codes, where two or more sub-codes are nested in a global code, have been proposed as candidates for reliable multi-terminal communication. In this paper, we consider nested array-based spatially coupled low-density parity-check (SC-LDP C) codes and propose a line-counting based optimization scheme for minimizing the number of dominant absorbing sets in order to improve its performance in the high signal-to-noise ratio regime. Since the parity-check matrices of different nested sub-codes partially overlap, the optimization of one nested sub-code imposes constraints on the optimization of the other sub-codes. To tackle these constraints, a multi-step optimization process is applied first to one of the nested codes, then sequential optimization of the remaining nested codes is carried out based on the constraints imposed by the previously optimized sub-codes. Results show that the order of optimization has a significant impact on the number of dominant absorbing sets in the Tanner graph of the code, resulting in a tradeoff between the performance of a nested code structure and its optimization sequence: the code which is optimized without constraints has fewer harmful structures than the code which is optimized with constraints. We also show that for certain code parameters, dominant absorbing sets in the Tanner graphs of all nested codes are completely removed using our proposed optimization strategy.
170 - Eshed Ram , Yuval Cassuto 2019
A new type of spatially coupled low-density parity-check (SC-LDPC) codes motivated by practical storage applications is presented. SC-LDPCL codes (suffix L stands for locality) can be decoded locally at the level of sub-blocks that are much smaller t han the full code block, thus offering flexible access to the coded information alongside the strong reliability of the global full-block decoding. Toward that, we propose constructions of SC-LDPCL codes that allow controlling the trade-off between local and global correction performance. In addition to local and global decoding, the paper develops a density-evolution analysis for a decoding mode we call semi-global decoding, in which the decoder has access to the requested sub-block plus a prescribed number of sub-blocks around it. SC-LDPCL codes are also studied under a channel model with variability across sub-blocks, for which decoding-performance lower bounds are derived.
Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. B ased on the combinatorial optimization, we present an approximation method for the check node processing. The simulation results demonstrate that our scheme has small performance loss over the additive white Gaussian noise channel and independent Rayleigh fading channel. Furthermore, the proposed reduced-complexity realization provides significant savings on hardware, so it yields a good performance-complexity tradeoff and can be efficiently implemented.
Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improv ed error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا