ﻻ يوجد ملخص باللغة العربية
The aim of this work is to study the problem of the existence of a fundamental relation between the interfacial tension of a system of two partially miscible liquids and the surface tensions of the pure substances. It is shown that these properties cannot be correlated from the physical point of view. However, an accurate relation between them may be developed using a mathematical artifact. In the light of this work, the basis of the empirical formula of Girifalco and Good is examined. The weakness of this formula as well as the approximation leading to it are exposed and discussed and, a new equation connecting interfacial and surface tensions is proposed.
Transport properties of dense fluids are fundamentally challenging, because the powerful approaches of equilibrium statistical physics cannot be applied. Polar fluids compound this problem, because the long-range interactions preclude the use of a si
We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for
The interfacial tension between immiscible liquids is studied as a function of a model linear surfactant length and concentration using coarse grained, dissipative particle dynamics numerical simulations. The adsorption isotherms obtained from the si
A first-principle multiscale modeling approach is presented, which is derived from the solution of the Ornstein-Zernike equation for the coarse-grained representation of polymer liquids. The approach is analytical, and for this reason is transferable
We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynam