ﻻ يوجد ملخص باللغة العربية
The method of microcontact spectroscopy is used to study alloys with magnetic impurities CuMn and CuFe in the range of concentrations 0.01-1 at.%. Minima or maxima (so-called zero-bias anomalies) were observed in the microcontact spectra of these alloys at voltages ~ 1 mV. The Lande g-factor for the Mn impurity in a Cu matrix was determined from the splitting of the minimum of the zero-bias anomaly in a magnetic field. The quantitative calculations carried out agree well with theory and permit determining both the important geometric contact parameter <K> i.e., the averaged geometric form factor, and the characteristics of the alloy itself, for example, J/E_F, i.e., the ratio of the magnitude of the exchange interaction energy between an electron and the magnetic impurity to the Fermi energy, from the microcontact spectra.
The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here we study the additional effects due to an external magnetic field. Combined with the measured condu
An archetypical spin-glass metallic alloy, Cu0.83Mn0.17, is studied by means of an ab-initio based approach. First-principles calculations are employed to obtain effective chemical, strain-induced and magnetic exchange interactions, as well as static
We carried out point contact (PC) investigation of WTe2 single crystals. We measured Yanson d2V/dI2 PC spectra of the electron-phonon interaction (EPI) in WTe2. The spectra demonstrate a main phonon peak around 8 meV and a shallow second maximum near
Nanostructured superconductor/ferromagnet heterocontacts are studied in the different transport regimes of point-contact spectroscopy. Direct measurements of the nanocontact size by scanning electron microscopy allow a comparison with theoretical mod
We propose a probe based on nuclear relaxation and Knight shift measurements for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact (QPC) devices. We show that the presence of a bound electron in the QPC would lead to a muc