ﻻ يوجد ملخص باللغة العربية
A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many Fe based superconductors. However, in the FeSe system with a nematic transition at $T_{rm s} approx$ 90 K no evidence for long-range static magnetism down to very low temperature was found. The lack of magnetism is a challenge for the theoretical description of FeSe. Here, we investigated high-quality single crystals of FeSe using high-field (up to 9.5 Tesla) muon spin rotation ($mu$SR) measurements. The $mu$SR Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around $T^{*} sim 10$ K, where the Knight shift exhibits a kink. This behavior hints to an essential change of the electronic and/or magnetic properties crossing the region near $T^{*}$. In the temperature range $T_{rm s} gtrsim T gtrsim T^{*}$ the muon spin depolarization rate follows a critical behavior $Lambda propto T^{-0.4}$. The observed non-Fermi liquid behavior with a cutoff at $T^{*}$ indicates that FeSe is in the vicinity to a antiferromagnetic quantum critical point. Our analysis is suggestive for $T^{*}$ triggered by the Lifshitz transition.
Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and
We report high resolution ARPES measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80$%$ detwinned. W
We report synthesis and single crystal measurements of magnetic, transport and thermal properties of single crystalline BaCo$_2$As$_2$ as well as first principles calculations of the electronic structure and magnetic behavior. These results show that
Resistivity and Hall effect measurements of EuFe$_2$As$_2$ up to 3.2,GPa indicate no divergence of quasiparticle effective mass at the pressure $P_mathrm{c}$ where the magnetic and structural transition disappears. This is corroborated by analysis of
We report the evolution of nematic fluctuations in FeSe$_{1-x}$S$_x$ single crystals as a function of Sulfur content $x$ across the nematic quantum critical point (QCP) $x_csim$ 0.17 via Raman scattering. The Raman spectra in the $B_{1g}$ nematic cha