ﻻ يوجد ملخص باللغة العربية
This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d8 4d levels of astrophysical interest in singly ionized nickel. Radiative lifetimes of seven high-lying levels of even parity in Ni II (98400 -100600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194 - 520 nm depopulating even parity 3d8 4d levels. The new calculated gf-values are, on the average, about 20 % higher than a previous calculation by Kurucz (http://kurucz.harvard.edu) and yield lifetimes within 5 % of the experimental values.
Today, relativistic calculations are known to provide a very successful means in the study of open-shell atoms and ions. But although accurate atomic data are obtained from these computations, they are traditionally carried out in jj-coupling and, he
A comprehensive study of high-accuracy photoionization cross sections is carried out using the relativistic Breit-Pauli R-matrix (BPRM) method for (hnu + Fe XVII --> Fe XVIII + e). Owing to its importance in high-temperature plasmas the calculations
A review of a renewed effort to recalculate astrophysical opacities using the R-Matrix method is presented. The computational methods and new extensions are described. Resulting enhancements found in test calculations under stellar interior condition
Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the as
To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages needs to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of ch