ترغب بنشر مسار تعليمي؟ اضغط هنا

Examining empirical evidence of the effect of superfluidity on the fusion barrier

113   0   0.0 ( 0 )
 نشر من قبل Guillaume Scamps
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Guillaume Scamps




اسأل ChatGPT حول البحث

Background: Several Time-Dependent Hartree-Fock-Bogoliubov (TDHFB) calculations predict that the super- fluidity enhances the fluctuations of the fusion barrier. This effect is not fully understood and not yet revealed experimentally. Purpose: The goal of this study is to investigate empirically the effect of the superfluidity on the fusion barrier width. Method: First, the local regression method is introduce and used to determine the barrier distribution more precisely. A second method that requires only the calculation of an integral of the cross section is developed to determine accurately the fluctuations of the barrier. A benchmark is done between this two methods and with the fitting method usually used. This integral method showing a better agreement in a test case, it is applied systematically in a selection of 115 fusion reactions. Results: The fluctuations of the barrier for superfluid systems are on average larger than for magic or semi-magic nuclei. This is due to the deformation effects and the effect of the superfluidity. To disentangle those two effects, we compare the experimental width to the width estimated from a model that takes into account the tunneling, the deformation and the vibration effect. The deviation of the experimental width from this theory for reaction between superfluid nuclei shows that the superfluidity enhance the fusion barrier width. Conclusions: This analysis shows that the predicted effect of the superfluidity on the width of the barrier is real and is of the order of 1 MeV.

قيم البحث

اقرأ أيضاً

A large number of complete fusion excitation functions of reactions including the breakup channel were measured in recent decades, especially in the last few years. It allows us to investigate the systematic behavior of the breakup effects on the com plete fusion cross sections. To this end, we perform a systematic study of the breakup effects on the complete fusion cross sections at energies above the Coulomb barrier. The reduced fusion functions F(x) are compared with the universal fusion functions which are used as a uniform standard reference. The complete fusion cross sections at energies above the Coulomb barrier are suppressed by the breakup of projectiles. This suppression effect for reactions induced by the same projectile is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.
We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy ion fusion analysis and Coupled-Channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potenti al from above-barrier data. We show that the choice of the bare potential may be critical for the analysis of the fusion cross sections. We show also that the barrier parameters taken from above barrier data may be very wrong.
The tunneling of composite systems, where breakup may occur during the barrier penetration process is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at near and below the Coulomb barrier energies. However, clear evidence for the halo enhancements, seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus $^{6}$He with the actinide nucleus $^{238}$U is significantly enhanced compared to the fusion of a no-halo $^{6}$He. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement was also observed in the $^{6}$He + $^{209}$% Bi system. The role of the corresponding easily excitable low lying dipole pygmy resonance in these systems is therefore significant. The consequence of this overall enhanced fusion of halo nuclei at sub-barrier energies, on stellar evolution and nucleosynthesis is evident.
73 - K. Hagino , N. Rowley , 2015
The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we dis cuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as $^{12}$C+$^{12}$C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of $^{58}$Ni+$^{58}$Ni and $^{40}$Ca+$^{58}$Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.
141 - Alexis Diaz-Torres 2010
The classical dynamical model for reactions induced by weakly-bound nuclei at near-barrier energies is developed further. It allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the p opulation of high-spin states in reaction products as well as the angular distribution of direct alpha-production. Model calculations indicate that incomplete fusion is an effective mechanism for populating high-spin states, and its contribution to the direct alpha production yield diminishes with decreasing energy towards the Coulomb barrier. It also becomes notably separated in angles from the contribution of no-capture breakup events. This should facilitate the experimental disentanglement of these competing reaction processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا