ﻻ يوجد ملخص باللغة العربية
The Riemann problem, and the associated generalized Riemann problem, are increasingly seen as the important building blocks for modern higher order Godunov-type schemes. In the past, building a generalized Riemann problem solver was seen as an intricately mathematical task for complicated physical or engineering problems because the associated Riemann problem is different for each hyperbolic system of interest. This paper changes that situation. The HLLI Riemann solver is a recently-proposed Riemann solver that is universal in that it is applicable to any hyperbolic system, whether in conservation form or with non-conservative products. The HLLI Riemann solver is also complete in the sense that if it is given a complete set of eigenvectors, it represents all waves with minimal dissipation. It is, therefore, very attractive to build a generalized Riemann problem solver version of the HLLI Riemann solver. This is the task that is accomplished in the present paper. We show that at second order, the generalized Riemann problem version of the HLLI Riemann solver is easy to design. Our GRP solver is also complete and universal because it inherits those good properties from original HLLI Riemann solver. We also show how our GRP solver can be adapted to the solution of hyperbolic systems with stiff source terms. Our generalized HLLI Riemann solver is easy to implement and performs robustly and well over a range of test problems. All implementation-related details are presented. Results from several stringent test problems are shown. These test problems are drawn from many different hyperbolic systems, and include hyperbolic systems in conservation form; with non-conservative products; and with stiff source terms. The present generalized Riemann problem solver performs well on all of them.
Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the con
A Riemann problem with prescribed initial conditions will produce one of three possible wave patterns corresponding to the propagation of the different discontinuities that will be produced once the system is allowed to relax. In general, when solvin
We extend our approach for the exact solution of the Riemann problem in relativistic hydrodynamics to the case in which the fluid velocity has components tangential to the initial discontinuity. As in one-dimensional flows, we here show that the wave
We propose an efficient, accurate and robust implicit solver for the incompressible Navier-Stokes equations, based on a DG spatial discretization and on the TR-BDF2 method for time discretization. The effectiveness of the method is demonstrated in a
In [Z. Hu, R. Li, and Z. Qiao. Acceleration for microflow simulations of high-order moment models by using lower-order model correction. J. Comput. Phys., 327:225-244, 2016], it has been successfully demonstrated that using lower-order moment model c