ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Exact Riemann Solver for Multidimensional Relativistic Flows

68   0   0.0 ( 0 )
 نشر من قبل Zanotti Olindo
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend our approach for the exact solution of the Riemann problem in relativistic hydrodynamics to the case in which the fluid velocity has components tangential to the initial discontinuity. As in one-dimensional flows, we here show that the wave-pattern produced in a multidimensional relativistic Riemann problem can be predicted entirely by examining the initial conditions. Our method is logically very simple and allows for a numerical implementation of an exact Riemann solver which is both straightforward and computationally efficient. The simplicity of the approach is also important for revealing special relativistic effects responsible for a smooth transition from one wave-pattern to another when the tangential velocities in the initial states are suitably varied. While the content of this paper is focussed on a flat spacetime, the local Lorentz invariance allows its use also in fully general relativistic calculations.



قيم البحث

اقرأ أيضاً

216 - L. Rezzolla , O. Zanotti 2001
A Riemann problem with prescribed initial conditions will produce one of three possible wave patterns corresponding to the propagation of the different discontinuities that will be produced once the system is allowed to relax. In general, when solvin g the Riemann problem numerically, the determination of the specific wave pattern produced is obtained through some initial guess which can be successively discarded or improved. We here discuss a new procedure, suitable for implementation in an exact Riemann solver in one dimension, which removes the initial ambiguity in the wave pattern. In particular we focus our attention on the relativistic velocity jump between the two initial states and use this to determine, through some analytic conditions, the wave pattern produced by the decay of the initial discontinuity. The exact Riemann problem is then solved by means of calculating the root of a nonlinear equation. Interestingly, in the case of two rarefaction waves, this root can even be found analytically. Our procedure is straightforward to implement numerically and improves the efficiency of numerical codes based on exact Riemann solvers.
We discuss the procedure for the exact solution of the Riemann problem in special relativistic magnetohydrodynamics (MHD). We consider both initial states leading to a set of only three waves analogous to the ones in relativistic hydrodynamics, as we ll as generic initial states leading to the full set of seven MHD waves. Because of its generality, the solution presented here could serve as an important test for those numerical codes solving the MHD equations in relativistic regimes.
78 - L. Rezzolla , O. Zanotti 2002
In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the flui d is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.
We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 10^2--10^6. We discuss the application of an existing relativistic, hydrodynamic primitive-variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 10^2 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latters capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
A number of astrophysical scenarios possess and preserve an overall cylindrical symmetry also when undergoing a catastrophic and nonlinear evolution. Exploiting such a symmetry, these processes can be studied through numerical-relativity simulations at smaller computational costs and at considerably larger spatial resolutions. We here present a new flux-conservative formulation of the relativistic hydrodynamics equations in cylindrical coordinates. By rearranging those terms in the equations which are the sources of the largest numerical errors, the new formulation yields a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. We illustrate this through a series of numerical tests involving the evolution of oscillating spherical and rotating stars, as well as shock-tube tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا