ترغب بنشر مسار تعليمي؟ اضغط هنا

Overconvergent relative de Rham cohomology over the Fargues-Fontaine curve

115   0   0.0 ( 0 )
 نشر من قبل Arthur-C\\'esar Le Bras
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which extends (in a suitable sense) Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over the ring of integers of a finite extension of $mathbf{Q}_p$. This cohomology theory factors through the category of rigid analytic motives of Ayoub.



قيم البحث

اقرأ أيضاً

181 - Serin Hong 2019
We completely classify all quotient bundles of a given vector bundle on the Fargues-Fontaine curve. As consequences, we have two additional classification results: a complete classification of all vector bundles that are generated by a fixed number o f global sections and a nearly complete classification of subbundles of a given vector bundle. For the proof, we combine the dimension counting argument for moduli of bundle maps developed in [BFH+17] with a series of reduction arguments based on some reinterpretation of the classifying conditions.
We completely classify the possible extensions between semistable vector bundles on the Fargues-Fontaine curve (over an algebraically closed perfectoid field), in terms of a simple condition on Harder-Narasimhan polygons. Our arguments rely on a care ful study of various moduli spaces of bundle maps, which we define and analyze using Scholzes language of diamonds. This analysis reduces our main results to a somewhat involved combinatorial problem, which we then solve via a reinterpretation in terms of the euclidean geometry of Harder-Narasimhan polygons.
We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one cat egory to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-etale cohomology of the open disk and the affine space, of independent interest.
For a natural number $m$, let $mathcal{S}_m/mathbb{F}_2$ be the $m$th Suzuki curve. We study the mod $2$ Dieudonn{e} module of $mathcal{S}_m$, which gives the equivalent information as the Ekedahl-Oort type or the structure of the $2$-torsion group s cheme of its Jacobian. We accomplish this by studying the de Rham cohomology of $mathcal{S}_m$. For all $m$, we determine the structure of the de Rham cohomology as a $2$-modular representation of the $m$th Suzuki group and the structure of a submodule of the mod $2$ Dieudonn{e} module. For $m=1$ and $2$, we determine the complete structure of the mod $2$ Dieudonn{e} module.
200 - Serin Hong 2019
We completely classify all subbundles of a given vector bundle on the Fargues-Fontaine curve. Our classification is given in terms of a simple and explicit condition on Harder-Narasimhan polygons. Our proof is inspired by the proof of the main theore m in [Hon19], but also involves a number of nontrivial adjustments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا