ترغب بنشر مسار تعليمي؟ اضغط هنا

Espaces de Banach-Colmez et faisceaux coherents sur la courbe de Fargues-Fontaine

129   0   0.0 ( 0 )
 نشر من قبل Arthur-C\\'esar Le Bras
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one category to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-etale cohomology of the open disk and the affine space, of independent interest.



قيم البحث

اقرأ أيضاً

We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which exte nds (in a suitable sense) Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over the ring of integers of a finite extension of $mathbf{Q}_p$. This cohomology theory factors through the category of rigid analytic motives of Ayoub.
113 - Clement Dupont 2021
This survey article is the written version of a talk given at the Bourbaki seminar in April 2021. We give an introduction to Zagiers conjecture on special values of Dedekind zeta functions, and its relation to $K$-theory of fields and the theory of m otives. We survey recent progress on the conjecture and in particular the proof of the $n=4$ case of the conjecture by Goncharov and Rudenko.
145 - Gaetan Chenevier 2010
Let X_d be the p-adic analytic space classifying the d-dimensional (semisimple) p-adic Galois representations of the absolute Galois group of Q_p. We show that the crystalline representations are Zarski-dense in many irreducible components of X_d, in cluding the components made of residually irreducible representations. This extends to any dimension d previous results of Colmez and Kisin for d = 2. For this we construct an analogue of the infinite fern of Gouv^ea-Mazur in this context, based on a study of analytic families of trianguline (phi,Gamma)-modules over the Robba ring. We show in particular the existence of a universal family of (framed, regular) trianguline (phi,Gamma)-modules, as well as the density of the crystalline (phi,Gamma)-modules in this family. These results may be viewed as a local analogue of the theory of p-adic families of finite slope automorphic forms, they are new already in dimension 2. The technical heart of the paper is a collection of results about the Fontaine-Herr cohomology of families of trianguline (phi,Gamma)-modules.
284 - Fabien Pazuki 2015
This paper contains results concerning a conjecture made by Lang and Silverman predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive a s corollaries uniform bounds on the number of torsion points on families of abelian surfaces and on the number of rational points on families of genus 2 curves.
On the rank of Jacobians over function fields.} Let $f:mathcal{X}to C$ be a projective surface fibered over a curve and defined over a number field $k$. We give an interpretation of the rank of the Mordell-Weil group over $k(C)$ of the jacobian of th e generic fibre (modulo the constant part) in terms of average of the traces of Frobenius on the fibers of $f$. The results also give a reinterpretation of the Tate conjecture for the surface $mathcal{X}$ and generalizes results of Nagao, Rosen-Silverman and Wazir.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا