ترغب بنشر مسار تعليمي؟ اضغط هنا

EMUS-QMC: Elective Momentum Ultra-Size Quantum Monte Carlo Method

82   0   0.0 ( 0 )
 نشر من قبل Zi Hong Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One bottleneck of quantum Monte Carlo (QMC) simulation of strongly correlated electron systems lies at the scaling relation of computational complexity with respect to the system sizes. For generic lattice models of interacting fermions, the best methodology at hand still scales with $beta N^3$ where $beta$ is the inverse temperature and $N$ is the system size. Such scaling behavior has greatly hampered the accessibility of the universal infrared (IR) physics of many interesting correlated electron models at (2+1)D, let alone (3+1)D. To reduce the computational complexity, we develop a new QMC method with inhomogeneous momentum-space mesh, dubbed elective momentum ultra-size quantum Monte Carlo (EQMC) method. Instead of treating all fermionic excitations on an equal footing as in conventional QMC methods, by converting the fermion determinant into the momentum space, our method focuses on fermion modes that are directly associated with low-energy (IR) physics in the vicinity of the so-called hot-spots, while other fermion modes irrelevant for universal properties are ignored. As shown in the manuscript, for any cutoff-independent quantities, e.g. scaling exponents, this method can achieve the same level of accuracy with orders of magnitude increase in computational efficiency. We demonstrate this method with a model of antiferromagnetic itinerant quantum critical point, realized via coupling itinerant fermions with a frustrated transverse-field Ising model on a triangle lattice. The system size of $48 times 48 times 32$ ($Ltimes Ltimesbeta$, almost 3 times of previous investigations) are comfortably accessed with EQMC. With much larger system sizes, the scaling exponents are unveiled with unprecedentedly high accuracy, and this result sheds new light on the open debate about the nature and the universality class of itinerant quantum critical points.



قيم البحث

اقرأ أيضاً

We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab-initio quantum Monte Carlo simulati on to the Majorana fermion system in which the path-integral measure is given by a semi-positive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperature.
Extended solids are frequently simulated as finite systems with periodic boundary conditions, which due to the long-range nature of the Coulomb interaction may lead to slowly decaying finite- size errors. In the case of Quantum-Monte-Carlo simulation s, which are based on real space, both real-space and momentum-space solutions to this problem exist. Here, we describe a hybrid method which using real-space data models the spherically averaged structure factor in momentum space. We show that (i) by integration our hybrid method exactly maps onto the real-space model periodic Coulomb-interaction (MPC) method and (ii) therefore our method combines the best of both worlds (real-space and momentum-space). One can use known momentum-resolved behavior to improve convergence where MPC fails (e.g., at surface-like systems). In contrast to pure momentum-space methods, our method only deals with a simple single-valued function and, hence, better lends itself to interpolation with exact small-momentum data as no directional information is needed. By virtue of integration, the resulting finite-size corrections can be written as an addition to MPC.
We present a non-iterative solver based on the Schur complement method for sparse linear systems of special form which appear in Quantum Monte-Carlo (QMC) simulations of strongly interacting fermions on the lattice. While the number of floating-point operations for this solver scales as the cube of the number of lattice sites, for practically relevant lattice sizes it is still significantly faster than iterative solvers such as the Conjugate Gradient method in the regime of strong inter-fermion interactions, for example, in the vicinity of quantum phase transitions. The speed-up is even more dramatic for the solution of multiple linear systems with different right-hand sides. We present benchmark results for QMC simulations of the tight-binding models on the hexagonal graphene lattice with on-site (Hubbard) and non-local (Coulomb) interactions, and demonstrate the potential for further speed-up using GPU.
We consider the effect of the coupling between 2D quantum rotors near an XY ferromagnetic quantum critical point and spins of itinerant fermions. We analyze how this coupling affects the dynamics of rotors and the self-energy of fermions.A common bel ief is that near a $mathbf{q}=0$ ferromagnetic transition, fermions induce an $Omega/q$ Landau damping of rotors (i.e., the dynamical critical exponent is $z=3$) and Landau overdamped rotors give rise to non-Fermi liquid fermionic self-energy $Sigmapropto omega^{2/3}$. This behavior has been confirmed in previous quantum Monte Carlo studies. Here we show that for the XY case the behavior is different. We report the results of large scale quantum Monte Carlo simulations, which clearly show that at small frequencies $z=2$ and $Sigmapropto omega^{1/2}$. We argue that the new behavior is associated with the fact that a fermionic spin is by itself not a conserved quantity due to spin-spin coupling to rotors, and a combination of self-energy and vertex corrections replaces $1/q$ in the Landau damping by a constant. We discuss the implication of these results to experiment
We introduce a semistochastic implementation of the power method to compute, for very large matrices, the dominant eigenvalue and expectation values involving the corresponding eigenvector. The method is semistochastic in that the matrix multiplicati on is partially implemented numerically exactly and partially with respect to expectation values only. Compared to a fully stochastic method, the semistochastic approach significantly reduces the computational time required to obtain the eigenvalue to a specified statistical uncertainty. This is demonstrated by the application of the semistochastic quantum Monte Carlo method to systems with a sign problem: the fermion Hubbard model and the carbon dimer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا