ﻻ يوجد ملخص باللغة العربية
Accurate reconstruction of the spatial distributions of the Point Spread Function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
Reconstruction of the point spread function (PSF) is a critical process in weak lensing measurement. We develop a real-data based and galaxy-oriented pipeline to compare the performances of various PSF reconstruction schemes. Making use of a large am
We improve the ERA(Ellipticity of Re-smeared Artificial image) method of PSF(Point Spread Function) correction in weak lensing shear analysis in order to treat realistic shape of galaxies and PSF. This is done by re-smearing PSF and the observed gala
The robust estimation of the tiny distortions (shears) of galaxy shapes caused by weak gravitational lensing in the presence of much larger shape distortions due to the point-spread function (PSF) has been widely investigated. One major problem is th
We generalize ERA method of PSF correction for more realistic situations. The method re-smears the observed galaxy image(galaxy image smeared by PSF) and PSF image by an appropriate function called Re-Smearing Function(RSF) to make new images which h
Parametric modeling of galaxy cluster density profiles from weak lensing observations leads to a mass bias, whose detailed understanding is critical in deriving accurate mass-observable relations for constraining cosmological models. Drawing from exi