ترغب بنشر مسار تعليمي؟ اضغط هنا

The ERA Method with Idealizing PSF for Precise Weak Gravitational Lensing Shear Analysis

423   0   0.0 ( 0 )
 نشر من قبل Yuki Okura
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize ERA method of PSF correction for more realistic situations. The method re-smears the observed galaxy image(galaxy image smeared by PSF) and PSF image by an appropriate function called Re-Smearing Function(RSF) to make new images which have the same ellipticity with the lensed (before smeared by PSF) galaxy image. It has been shown that the method avoids a systematic error arising from an approximation in the usual PSF correction in moment method such as KSB for simple PSF shape. By adopting an idealized PSF we generalize ERA method applicable for arbitrary PSF. This is confirmed with simulated complex PSF shapes. We also consider the effect of pixel noise and found that the effect causes systematic overestimation.



قيم البحث

اقرأ أيضاً

We improve the ERA(Ellipticity of Re-smeared Artificial image) method of PSF(Point Spread Function) correction in weak lensing shear analysis in order to treat realistic shape of galaxies and PSF. This is done by re-smearing PSF and the observed gala xy image smeared by a RSF(Re-Smearing Function), and allows us to use a new PSF with a simple shape and to correct PSF effect without any approximations and assumptions. We perform numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct PSF effect with systematic error less than 0.1%. We also apply ERA method for real data of Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 second to correct PSF for each object in numerical test and real data analysis, respectively.
Highly precise weak lensing shear measurement is required for statistical weak gravitational lensing analysis such as cosmic shear measurement to achieve severe constrain on the cosmological parameters. For this purpose any systematic error in the me asurement should be corrected. One of the main systematic error comes from Pixel noise which is Poisson noise of flux from atmosphere. We investigate how the pixel noise makes systematic error in shear measurement based on ERA method and develop the correction method. This method is tested by simulations with various conditions and it is confirmed that the correction method can correct $80 sim 90%$ of the systematic error except very low signal to noise ratio galaxies.
Weak gravitational lensing flexions are a kind of weak lensing distortion which are defined as the spin 1 and spin 3 combinations of the third order derivatives of gravitational lensing potential. Since the shear has spin 2 combination of the second order derivative, the flexion signal gives a partly independent information from shear signal and is more sensitive to the local mass distribution than shear signal. Thus its measurement is expected to play important roles in observational cosmology. However, since the weakness of the flexion signal as well as the complicatedness of its intrinsic noise made its accurate observation very difficult. We propose a new method of measuring the flexion signal using ERA method which is a method to measure weak lensing shear without any approximation. We find two particular combinations of the flexions which provide the quantities with only lensing information and free of intrinsic noise when taken average. It is confirmed by simple numerical simulation that the statistical average of these combinations do not in fact depend on the strength of the intrinsic distortion.
Highly precise weak lensing shear measurement is required for statistical weak gravitational lensing analysis such as cosmic shear measurement to achieve severe constraint on the cosmological parameters. For this purpose, the accurate shape measureme nt of background galaxies is absolutely important in which any systematic error in the measurement should be carefully corrected. One of the main systematic error comes from photon noise which is Poisson noise of flux from the atmosphere(noise bias). We investigate how the photon noise makes a systematic error in shear measurement within the framework of ERA method we developed in earlier papers and gives a practical correction method. The method is tested by simulations with real galaxy images with various conditions and it is confirmed that it can correct $80 sim 90%$ of the noise bias except for galaxies with very low signal to noise ratio.
We propose a new method for Point Spread Function (PSF) correction in weak gravitational lensing shear analysis using an artificial image with the same ellipticity as the lensed image. This avoids the systematic error associated with the approximatio n in PSF correction used in previous approaches. We test the new method with simulated objects which have Gaussian or Cersic profiles smeared by a Gaussian PSF, and confirm that there is no systematic error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا