ﻻ يوجد ملخص باللغة العربية
We generalize ERA method of PSF correction for more realistic situations. The method re-smears the observed galaxy image(galaxy image smeared by PSF) and PSF image by an appropriate function called Re-Smearing Function(RSF) to make new images which have the same ellipticity with the lensed (before smeared by PSF) galaxy image. It has been shown that the method avoids a systematic error arising from an approximation in the usual PSF correction in moment method such as KSB for simple PSF shape. By adopting an idealized PSF we generalize ERA method applicable for arbitrary PSF. This is confirmed with simulated complex PSF shapes. We also consider the effect of pixel noise and found that the effect causes systematic overestimation.
We improve the ERA(Ellipticity of Re-smeared Artificial image) method of PSF(Point Spread Function) correction in weak lensing shear analysis in order to treat realistic shape of galaxies and PSF. This is done by re-smearing PSF and the observed gala
Highly precise weak lensing shear measurement is required for statistical weak gravitational lensing analysis such as cosmic shear measurement to achieve severe constrain on the cosmological parameters. For this purpose any systematic error in the me
Weak gravitational lensing flexions are a kind of weak lensing distortion which are defined as the spin 1 and spin 3 combinations of the third order derivatives of gravitational lensing potential. Since the shear has spin 2 combination of the second
Highly precise weak lensing shear measurement is required for statistical weak gravitational lensing analysis such as cosmic shear measurement to achieve severe constraint on the cosmological parameters. For this purpose, the accurate shape measureme
We propose a new method for Point Spread Function (PSF) correction in weak gravitational lensing shear analysis using an artificial image with the same ellipticity as the lensed image. This avoids the systematic error associated with the approximatio