ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum information measures for restricted sets of observables

351   0   0.0 ( 0 )
 نشر من قبل Suvrat Raju
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study measures of quantum information when the space spanned by the set of accessible observables is not closed under products, i.e., we consider systems where an observer may be able to measure the expectation values of two operators, $langle O_1 rangle$ and $langle O_2 rangle$, but may not have access to $langle O_1 O_2 rangle$. This problem is relevant for the study of localized quantum information in gravity since the set of approximately-local operators in a region may not be closed under arbitrary products. While we cannot naturally associate a density matrix with a state in this setting, it is still possible to define a modular operator for a state, and distinguish between two states using a relative modular operator. These operators are defined on a little Hilbert space, which parameterizes small deformations of the system away from its original state, and they do not depend on the structure of the full Hilbert space of the theory. We extract a class of relative-entropy-like quantities from the spectrum of these operators that measure the distance between states, are monotonic under contractions of the set of available observables, and vanish only when the states are equal. Consequently, these distance-measures can be used to define measures of bipartite and multipartite entanglement. We describe applications of our measures to coarse-grained and fine-grained subregion dualities in AdS/CFT and provide a few sample calculations to illustrate our formalism.



قيم البحث

اقرأ أيضاً

116 - T. Banks 2020
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-t Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates the logarithm of the dimension of the Hilbert space associated with a diamond to one quarter of the area of the diamonds holographic screen, measured in Planck units. The most convincing argument for this principle is Jacobsons derivation of Einsteins equations as the hydrodynamic expression of this entropy law. In that context, the null energy condition (NEC) is seen to be the analog of the local law of entropy increase. The quantum version of Einsteins relativity principle is a set of constraints on the mutual quantum information shared by causal diamonds along different time-like trajectories. The implementation of this constraint for trajectories in relative motion is the greatest unsolved problem in HST. The other key feature of HST is its claim that, for non-negative cosmological constant or causal diamonds much smaller than the asymptotic radius of curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond are constrained states of variables defined on the holographic screen. This principle gives a simple explanation of otherwise puzzling features of BH entropy formulae, and resolves the firewall problem for black holes in Minkowski space. It motivates a covariant version of the CKNcite{ckn} bound on the regime of validity of quantum field theory (QFT) and a detailed picture of the way in which QFT emerges as an approximation to the exact theory.
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational phys ics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge R_B of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must satisfy the linearized Einsteins equations.
We analyze the geometry of a joint distribution over a set of discrete random variables. We briefly review Shannons entropy, conditional entropy, mutual information and conditional mutual information. We review the entropic information distance formu la of Rokhlin and Rajski. We then define an analogous information area. We motivate this definition and discuss its properties. We extend this definition to higher-dimensional volumes. We briefly discuss the potential utility for these geometric measures in quantum information processing.
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawkin g entropies for Schwarzschild black holes and Reissner-Nordstrom black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner-Nordstrom black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein-Hawking entropy of extremal black holes in the semiclassical limit.
We use holographic methods to characterize the RG flow of quantum information in a Chern-Simons theory coupled to massive fermions. First, we use entanglement entropy and mutual information between strips to derive the dimension of the RG-driving ope rator and a monotonic c-function. We then display a scaling regime where, unlike in a CFT, the mutual information between strips changes non-monotonically with strip width, vanishing in both IR and UV but rising to a maximum at intermediate scales. The associated information transitions also contribute to non-monotonicity in the conditional mutual information which characterizes the independence of neighboring strips after conditioning on a third. Finally, we construct a measure of extensivity which tests to what extent information that region A shares with regions B and C is additive. In general, mutual information is super-extensive in holographic theories, and we might expect super-extensivity to be maximized in CFTs since they are scale-free. Surprisingly, our massive theory is more super-extensive than a CFT in a range of scales near the UV limit, although it is less super-extensive than a CFT at all lower scales. Our analysis requires the full ten-dimensional dual gravity background, and the extremal surfaces computing entanglement entropy explore all of these dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا