ترغب بنشر مسار تعليمي؟ اضغط هنا

Information-carrying Hawking radiation and the number of microstate for a black hole

98   0   0.0 ( 0 )
 نشر من قبل Qing-Yu Cai
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawking entropies for Schwarzschild black holes and Reissner-Nordstrom black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner-Nordstrom black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein-Hawking entropy of extremal black holes in the semiclassical limit.

قيم البحث

اقرأ أيضاً

88 - H. Nikolic 2018
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amou nt that violates Bekenstein bound or any other reasonable bound, leading to a version of b.h. information paradox that does not involve Hawking radiation. Among many proposed solutions of the standard b.h. information paradox with Hawking radiation, only a few can also resolve this version without the Hawking radiation. The assumption that bo
We extend the work by S. Iso, H. Umetsu and F. Wilczek [Phys. Rev. Lett. 96 (2006) 151302] to derive the Hawking flux via gauge and gravitational anomalies of a most general two-dimensional non-extremal black hole space-time with the determinant of i ts diagonal metric differing from the unity ($sqrt{-g} eq 1$) and use it to investigate Hawking radiation from the Reissner-Nordstrom black hole with a global monopole by requiring the cancellation of anomalies at the horizon. It is shown that the compensating energy momentum and gauge fluxes required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to the $(1+1)$-dimensional thermal fluxes associated with Hawking radiation emanating from the horizon at the Hawking temperature. These fluxes are universally determined by the value of anomalies at the horizon.
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilcze k to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. By using same manner, we derive both the desired result of the Hawking temperature and the effect of the back reaction associated with the radiation in the squashed Kaluza-Klein black hole background.
Hawking flux from the Schwarzschild black hole with a global monopole is obtained by using Robinson and Wilczeks method. Adopting a dimension reduction technique, the effective quantum field in the (3+1)--dimensional global monopole background can be described by an infinite collection of the (1+1)--dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)--dimensional black body radiation at the Hawking temperature.
Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv:0707.2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified fo rmalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravitys rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا